
ARMORED
COMBAT
VEHICLES

SCIENCE &
TECHNOLOGY
NOV 1982 PLAN

DTIC EILE COPY

5

ADA 123

83 01 19 039

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- · Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC
contained pages with color printing, that when reproduced in
Black and White, may change detail of the original copy.

ARMORED COMBAT VEHICLE SCIENCE & TECHNOLOGY PLAN

SECOND EDITION

NOVEMBER 1982

US ARMY TANK-AUTOMOTIVE COMMAND

RESEARCH & DEVELOPMENT CENTER

SYSTEMS & TECH PLANNING OFFICE

WARREN, MICHIGAN

48090

Approved for public release; Distribution Unlimited

This Document
Reproduced From
Best Available Copy

TABLE OF CONTENTS

		PAGE
I.	FORWARD	1
II.	PREFACE	3
III.	INDEX	5
IV.	CLOSE COMBAT-HEAVY	MISIC BOPY
	м60	A-1
	M1	B-1 Accession For
	BRADLEY FIGHTING VEHICLE	C-1 DITC TAR UNHALICENCE DISTRIBUTION
v.	CLOSE COMBAT-LIGHT	By
	M113 FOV	D-1 Availability Codes Availablity Codes Dist Special
	LAV	E-1 Dist Special
	MPGS	F-1
vI.	FUTURE CLOSE COMBAT VEHICLES	G-1
VII.	SUPPORTING TECHNOLOGY	H-1

Foreword

This is the second issue of the Armored Combat Vehicle Science and Technology Plan and is designed to present programs and objectives for FY1983 through FY2000. The Plan addresses RDT&E Technology initiatives as applied to the Army's armored combat vehicle projects. It has been developed assuming a reasonable level of funding and is depicted in terms of both technology and systems planning. This document will be the basis for establishing TACOM's management objectives and priorities for the DARCOM Long Range RD&A Plan and the Army's Science and Technology Program. Considerable interplay between documents is expected, particularly as the mission area analyses are completed.

The projects listed as applicable to each vehicle system are only provided to identify technologies and their availability. Final selection and scheduling for application is controlled by the system manager. It is expected in future editions to more succinctly identify each project as to whether it is being applied, being considered for application or is simply evolving with no firm application commitment.

The Plan is organized with the following four sections which tend to emulate the RD&A Plan:

- 1. Close Combat-Heavy
- 2. Close Combat-Light)
- 3. Future Close Combat Vehicle (FCCV) Study and
- 4. Supporting Technology

The first two sections are devoted to identifying technology applied directly to a combat vehicle or an identified combat vehicle system.

In the section on the FCCV Study we address the issues surrounding the formulation of combat vehicle system concepts based on threat projections, pacing technologies and operational concepts for the 1995-2000 year time frame.

Forward (cont.)

The last section identifies the supporting technologies generated by all the Commands involved in the S&T Program which are not posted as being applicable to a particular system. These include many generic projects that add to our general base of applicable scientific knowledge.

This will be a living document to be updated, commented on and/or changed on an annual basis. All concerned are encouraged to provide corrections and/or changes as they occur so that the Plan can be kept current. Any suggestions regarding ways to improve the Plan will be appreciated and be given due consideration.

OSCAR C. DECKER, JR.

Major General, USA

Commanding

US Army Tank-Automotive
Command

LOUIS C. WAGYER JR.

Major General, USA Commandant

US Army Armor School

R. L. WETZEL

Major General, USA

Commandant

US Army Infantry School

Preface

The following is a synopsis of the management structure for the Armored Combat Vehicle Science and Technology (ACV S&T) Base Development Program:

The Program Advisory Council (PAC) is a senior decision making body which is chaired by the Commanding General of TACOM. Its members are the Commanding General (CG) of the Armor Center at Fort Knox, KY, the CG of the Infantry School at Fort Benning, GA, and the Commanders or Technical Directors of DARCOM's major supporting commands. Senior user and developer advisors, Department of Defense (DoD) wide, are included as appropriate. These representatives have the authority to make decisions for their respective organizations and commit resources in support of the planned ACV S&T Base Program Activities.

The Systems & Technology Planning (STP) Office at TACCM provides a secretariat to coordinate the efforts of the Action Teams, the Systems Integration Team (SIT), and The Program Advisory Council. This office, in conjunction with the SIT, coordinates all inputs, prepares information for the PAC reviews and assures that PAC directives are fulfilled. It is this office which also provides logistical support to the ACV S&T Activity and sees to the preparation, printing and distribution of the plan and other ACV S&T program reports.

The Systems Integration Team (SIT) is chaired by the Chief of the Technology Planning Function in TACOM's STP Office. The SIT members are the chairpersons of the seven program Action Teams (Firepower, C³I, Support, Sensing, Mobility, Survivability, and Vetronics) and user representatives from the Armor Center and Infantry School. Serving in a overview function, the SIT addresses issues which transcend individual Action Teams' areas of expertise and interest. This team usually prepares information for the PAC based on Action Team activities or PAC direction.

Each Action Team is comprised of technical experts drawn from throughout DARCOM and the DoD. These teams meet periodically as needed to support the PAC and SIT as a part of the annual ACV S&T cycle. They review all those R&D efforts which could influence long range Armored Combat Vehicle Development Programs. Based on this technical review and assessment, recommendations are made to the PAC relative to significant technological opportunities, and program deficiencies or gaps. The teams follow the guidance provided by the PAC and the chairperson of the SIT. Each team publishes a report describing the team's efforts for each cycle of the ACV S&T Program. This report becomes part of the consolidated report prepared by TACOM.

The Armored Combat Vehicle Science and Technology Base Development program report and, now, the plan are annual products of the cycle. Once in place, their uses are manifold. Used as a source document by many different organizations DA wide, the report's primary use for the last two years has been in support of the DARCOM Research Development and Acquisition (RDA) Plan. It is now viewed as the major feeder document to the close combat portion of that DA prioritized plan. In future years, it is expected that this situation will remain as the ACV S&T Program continues its role of combat vehicle advocate within the Department of Defense. The plan is expected to encourage a forward looking focus. Allocation of resources through informed decision making in the ACV arena is expected to be expedited by the availability of this document.

	C3I
	FIREPOWER
Project Index	
This project index is provided to give the reader a simple way to identify and locate projects within this plan and identify their interrelationships. Additionally, it provides an easily usable cross index to the DARCOM RDA Plan (May 1982 Edition) so that its relationship to all of	MOBILITY
the Army's technological initiatives can be identified. This index is alphabetized by S&T action area and by project title within each area. The index also provides cross indexing of projects by vehicle application and command responsibility.	SENSING
An edge index is provided on the right to assist the user in finding projects within a particular Science and Technology category.	SUPPORT
	SURVIVABILITY
	VETRONICS

TITLE/DESCRIPTION

500 WATT VHF POWER AMPLIFIER

Boost output RF Power of AN/VRC-12 and SINCGARS-V radios from 40 watts to 500 watts. Provide increased communications range and ECCM capability.

ADAPTIVE VHF RADIO APPLIQUES FOR SINCGARS-V

Adaptive frequency selection and selective calling. Meteor burst applique for long range communications of burst voice and data adaptive power control.

ADVANCED TACTICAL POWER SOURCES

Control battery proliferation in DARCOM equipments and thus reduce field logistic problems.

ARMOR/AIR COVERT NET

Develop a Family of Millimeter Wave (MMW) radios providing covert "radio silence" communications capabilities for Armored Combat Vehicle (ACVH, ACVL, AIFV, SCV, etc...) or helicopter. MMW omnidirectional/directional systems provide low probability of intercept minimal signature, jam and EMP resistant mobile communications in platoon scenarios to 1.5 Km.

ARMY TACTICAL FREQUENCY ENGINEERING PILOT SYSTEM (ATFES)

To provide a vehicle to reach potential battlefield spectrum management capabilities through operational evaluation during major USAREUR exercises, and to provide a "now" or "go to war" battlefield spectrum management asset which will be used during the period prior to the availability of the second generation Communications System Control Element (CSCE).

AUTOMATED CAD SYSTEM FOR LSI/VLSI CUSTOM CHIPS

To provide the Army and its contractors with a comprehensive set of computer aided design tools and techniques for the cost-affordable development of LSI/VLSI/VHSI circuits and hybrid subsystems.

DISTRIBUTED PROCESSING

Develop an overall system architecture for a C³ system based on distributed processing. The system will provide for high survivability and CONOPS, and will support the TRADOC Command Control Subordinate System (CCS²).

FAULT TOLERANT, FAIL-SOFT ELECTRONIC MODULES

To provide electronic modules containing on-chip circuitry to detect and correct logic faults, circumvent logic failures and redistribute functional assignments to optimize remaining logic elements.

$\underline{c_3}_{\underline{I}}$

Company of the second of the s

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
CECOM	1X463707D437.00	10.4.26	A-5 B-5 C-5 D-9 E-3 F-5 G-3
CECOM	1L163701 AH92M0 1X463707D437.00		A-5 B-5 C-5 D-9 E-3 F-4 G-3
ERADCOM			н-3
CECOM	1X463707 D437.00		A-5 B-5 C-5 D-9 G-3
CECOM	1L162701 AH92		н-3
ERADCOM	1L1 62705 АНЭ404	13.6.5	H-2
CECOM	1L162701 AH92		н-3
ERADCOM	1L162705AH9404	13.6.2	н-3

TITLE/DESCRIPTION

IBER OPTIC TRANSMISSION SYSTEM (LOCAL DISTRIBUTION)
Replacement of CX-4566 (26 pair) cable with an optical cable system.

IBER OPTIC TRANSMISSION SYSTEM (LONG HAUL)

The FOTS(LH) will be compatible and interoperable with existing tactical digital communications equipment interconnected by CX-11230 twin metallic coaxial cable. This includes ATACS equipment, improved ATACS equipment, and selected TRI-TAC equipment. FOTS(LH) will be capable of operating over optical cable path lengths of from 300 meters to 6 kilometers without repeaters and up to 64 kilometers using no more than 10 repeaters.

IST RADIO NET SIMULATION MODEL

To collect statistics on the FIST Radio Network. The model will be used as an analytical tool during the independent evaluation of the FIST-V System. An expanded version of the model will be used to evaluate the communication capability of the Advanced Field Artillery Tactical Data System.

LAT PANEL ELECTROLUMINESCENT (EL) DISPLAYS

To develop reliable rugged lightweight, compact, solid state displays, capable of displaying full video and graphics legibly in light levels from total darkness to direct sunlight. Design goals include standard module configuration, built-in operator interactive touch panel and compatibility with Military Computer Family (MCF).

FREQUENCY HOPPING ANTENNA MULTIPLEXER

Antenna multiplexer similar to TD-1288/1289 for SINCGARS-V frequency hopping radios. Multiplexer will couple two or four radios to one antenna.

HANDHELD ENCRYPTION AND AUTHENTICATION DEVICE

Eliminate hard copy encryption/authentication and CEOI materials through the use of handheld encryption and authentication equipment.

HIGH POWER VHF VEHICULAR ANTENNA

Antenna to be used with TD-1288/1289 Antenna Multiplexers, Frequency Hopping Multiplexers, and 500 Watt Power Amplifier.

COL	

4.**AT**

COMMAND CECOM	PROJECT NO. 1x463707 D246-09-48	DARCOM PLAN PARA NO. 5.6.9	ACV S&T PLAN PG NO. H-2
CECOM	1x467J1D487.35	5,6,9	H-2
AMSAA			н-3
ERADCOM			A-5 B-5 C-5 E-3 F-5 G-3
CECOM	1L163701 AH92MO 1X463707D437.00	10.4.7	A-5 B-5 C-5 D-9
CECOM	1E5334017749163		A-4 B-4 C-4 D-8 E-2 F-4 G-2
CECOM	1E463707 D245.11		A-5 B-5 C-5 D-9 F-5

TITLE/PESCRIPTION

AN ENGINEERING LABORATORY COMMUNICATIONS SURVEY

Netted radio traffic of an armored squadron under near-realistic maneuver conditions will be recorded and analyzed. The analysis will be multifaceted - to include transmission queing statistics, transmit/ receive duty cycle data, static vs. on-the-move traffic characteristics, message content/ subject analysis, and operator characteristics/performance data.

SHT ARMORED ELECTRONIC SYSTEM CARRIER (LAESC)

To supply a prime mover for CE/Intel Systems that will provide survivability, reliability, and mobility required to support the airland battle. The vehicle will provide NBC protection, on-board power, a quick erect antenna, and environmental control.

A COST LAND NAVIGATION

Improve the positioning and heading capability of combat vehicles with a moderate cost land navigator having an accuracy of 1% distance traveled and heading of less than 1 degree.

W PHASE NOISE CRYSTAL OSCILLATOR

Develop ultra high stability crystal oscillators which are also immune to vibration, permitting operation on moving platforms.

CROELECTRIC PACKAGING

Develop packaging capability compatible with high speed circuit operation.

LITARY COMPUTER FAMILY

To develop a standard family of computers and peripherals to satisfy the requirements of virtually all projected battlefield automated systems eliminating the proliferation of types.

LLIMETER WAVE (MMW) WIRELESS INTERCELL COMMUNICATION SYSTEM (WICS)

To develop tunable MMW radios capable of providing both covert DF and jam resistant mobile orderwire and stationary time division multiple access communication for local distribution within a dispersed command post. A prototype system (6 identical radios) for a self contained network (within one cell) will demonstrate a mobile voice and TDMA voice and data communication capability between shelters/vehicles within a 2Km cluster.

C	3	I
C	د.	I

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
USAHEL			н-3
CECOM			E-3 F-5
MICOM			A-4 B-4 C-4 D-8
			E-2 F-4 G-2
ERADCOM	1L162705AH9410		A-4 B-4 C-4 D-8 E-2
ERADCOM	1L162705AH9404		
	TDAGE, OSMISTOR		H-2
CECOM	D186, D187, AD94		B-5 C-5 F-5 G-3
CECOM	1L162701AH92M0		D-8 F-4 G-2

TITLE/DESCRIPTION

MILLIMETER WAVE MULTICHANNEL COMMAND POST RADIO (MCPR)

Develop light weight, portable MMW multichannel radio system to: Reduce visual/RF signatures, vulnerability to ECM, EMP, jamming, supplement or replace cable systems, interface with ATACS PCM equipment.

MODULES FOR TECHNOLOGY INSERTION

Provide unique chips and brassboards modules for nearly all classes of Army Systems including Radar, E-O, AD. Communications, Missiles and EW.

NETWORK MANAGEMENT INTEGRATION - BATTLEFIELD INFORMATION DISTRIBUTION TECHNOLOGY

The objective is to develop a coherent distributed Network Management (NM) structure (algorithms, protocols, and architectures) for the emerging Battlefield Information Distribution (BID) concept.

NONELECTROMAGNETIC COMMUNICATIONS

Provide communication capabilities which cannot be jammed and with high survivability under hostile shelling.

NUMERICAL ELECTROMAGNETIC CODE

The program consists of several theoretical studies: Platform Effects on Tactical Communications, Proximity Effects on Low Profile Antennas, Antennas with Buried Ground Radials. Computer code will be developed on antenna theory and will be used in computer aided design of antennas on tactical vehicles and at base stations.

OBJECTIVE HF RADIO (OHFR)

Develop adaptive HF radio system with ECCM and data modems for rates up to 2.4 kbps, automated frequency management and automatically tuned antennas. Radios will be developed for manpack, vehicular and aircraft platforms.

POWER SOURCES/ADVANCED TACTICAL POWER SOURCES

Develop high rate, high energy density (2-3 times present lead-acid batteries), cost effective, rechargeable batteries to overcome operational deficiencies and life cycle problems of present batteries for combat vehicles in low temperatures environments.

RADIO WAVE PROPAGATION PREDICTION

To evaluate Radio Wave Propagation Models.

 $\underline{c^3\underline{1}}$

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
CECOM	1E463707D246.08		p-8
ERADCOM	1L162705 AH9404	13.6.4	A-5 B-5 C-5 D-9 E-3
CECOM	1L162701 AH92S0		н-3
HEL	,		н-3
CECOM	1L1611102 AH48NO		н~2
CECOH	1L162701AH92NB	*	A-4 B-4 C-4 D-8 G-2
ERADCOM	1L162705AH94-11 1L263702DG10-11		A-4 B-4 C-4 D-9 E-2 F-4 G-2
AMSAA			н 3

TITLE/DESCRIPTION

SINGLE CHANNEL GROUND AND AIRBORNE RADIO SUBSYSTEM (SINCGARS)

The SINCGARS-V Radio will replace the currently standard vehicular, and manpack. The AN/VCR-12 family and AN/PRC-77.

SINGLE CHANNEL OBJECTIVE TACTICAL TERMINAL (SCOTT)

SCOTT will provide mobile, jam resistant, extended range and single channel communicastions to high priority users of the Tactical Record Traffic System, from Theatre to Brigade.

SMALL UNIT RADIO

Replacement radio for AN PRC-68. Limited ECCM capability using direct sequence. New frequency band of operation. Low cost and maintenance using large scale integrated circuits.

SOS FREQUENCY SYNTHESIZER

To develop a minimum set of frequency synthesizer chips required for agile frequency synthesizers for HF, VHF, AND UHF communications and data link applications.

SPREAD SPECTRUM LPI TECHNOLOGY - BATTLEFIELD INFORMATION DISTRIBUTION TECHNOLOGY

The objectives are to develop improved ECCM/LPI capability for spread spectrum Battlefield Information Distribution Systems and exploit distributed net management concepts to improve survivability through adaptive AJ technique.

TACTICAL POWER SUPPLIES (1.5 KW TEG)

Provide silent, multi-fuel thermoelectric (TE) converters, burner systems, cooling systems for tactical TE power generators for SLEEP* ROC family of 0.5, 1.5, 3.0, 5.0, 10.0 KW power plants and for Integrated Power Environment Control Systems (IPECS) to provide electric power, heating and cooling for on-board shelter mounted C³ system.

UHS (1-2 CHz) FREQUENCY SYNTHESIZERS, UHS PRESCALERS

To develop 1-2 GHz frequency synthesizers using GaAs digital technology. Develop critical circuits required for the synthesizers through development of GaAs Array technology, CAD tools, HEMT (high electron mobility) circuits. Objective is to obtain enhanced ECCM which required higher processing speed than that which is obtainable from silicon technology.

 $\underline{c^3\underline{\iota}}$

CECOM	PROJECT NO. 6.37.46A D555	DARCOM PLAN PARA NO. 10.8.2 10.8.11 15.13.2 15.14.2	ACV S&T PLAN PG NO. A-4 B-4 C-4 D-8 E-2 F-4 G-2
USASATCOMA	1X433142D456		E-3
CECOM	1%463707D437.00		F-5 G-2
ERADCOM	1L1 62705 AH9404	13.7.1	A-4 B-4 C-4 D-8 E-2 F-4 G-2
CECOM	1L162701AH92S0	10.4.2	H-2
ERADCOM	1L162705 AH9411		A-5 B-5 C-5 D-9 E-2 F-4 G-3
ERADCOM	1L1 62705 AH9404	13.7.1	H~2

TITLE/DESCRIPTION

ULTRA HIGH SPEED (UHS) SIGNAL PROCESSORS AND 5-30 GHz PRESCALERS

Develop UHS Signal Processor capability for 1-5 GHz range (beyond VHSIC) using GaAs. Develop advance network processor architecture CAD design tools for UHS in conjunction with synergistic DARPA/ARMY program. Develop UHS counters and prescalers for Multigigahertz front-end processing.

VEHICLE COMMUNICATIONS CAPABILITY IN MOBA/MOUT

Establish communications capability of tactical vehicles in built-up areas. Include capability of moving vehicle to moving vehicle (to stationary vehicle, to foot patrol, to positions inside structures) communications.

VEHICULAR INTERCOMMUNICATION SYSTEM

Improved earphones and noise channel characterization measurements suitable for UHF spread spectrum communications in ground environments characterized by varying terrain, foliage, and urbanization.

VHSIC PHASE 1 CHIP SET

Demonstrate brassboard subsystems for key selected programs utilizing Very High Speed Signal Processing Chips based on 1.25 um design rules.

VHSIC PHASE 2 CHIP SET

To provide system demonstrations of the Phase 1 brassboards, enhance the producibility and availability of the Phase 1 chip set, and to increase the complexity-speed-density figure of merit of the VHSIC 1 chip set by 20 times.

VHSIC PROGRAMMABLE ANTI-JAM MODERN-BATTLEFIELD INFORMATION DISTRIBUTION TECHNOLOGY

The objectives are to explore new robust adaptive AJ concepts and to demonstrate the real time

capabilities thereof via implementation and demonstration of a VHSIC programmable modem braseboard or subsystem operating with PLRS, JTIDS, Low Cost Anti-Jam Data Link and potential BID waveforms, in various jamming environments and in support of future distributed network architectures, and to integrate into test bed for evaluation of advanced ECCM.

VHSIC SIGNAL PROCESSOR INSERTION IN PJH - ADVANCED COMMUNICATIONS CONCEPT DEVELOPMENT

The objective is to exploit the benefits of cost savings, size and Signal Processing capabilities derived from the VHSIC Program by providing early technology insertion of VHSIC Signal Processing chips into the PLRS/PJH Programs.

<u>c</u>3<u>1</u>

COMMAND ERADCOM	PROJECT NO. 1L1 62705 AH94.04	DARCOM PLAN PARA NO. 15.13.8 5.8.15	ACV S&T PLAN PG NO. H-2
		3,4,13 5.8.8	
HEL	1L162716AH70-F0		н-2
PM SINCGARS	1X463746D5550104		A-4 B-4 C-4 D-8 E-2 F-4 G-2
ERADCOM	63452 F956	13.5.1	A-4 B-4 C-5 D-9 E-2 F-5 G-3
ERADCOM	63452 F956	13.5.2	A-4 B-4 C-4 D-8 E-2 F-4 G-2
CECOM	1L162701 AH92S0	10.4.31	H-2
CECOM	1x463707D437.00		F-5 G-3

TITLE/DESCRIPTION

DEBAND PROPAGATION MEASUREMENT PROGRAM

ī

Plan and conduct wideband channel characterization measurements suitable for UHF spread spectrum communications in ground environments characterized by varying terrain, foliage, and urbanization.

 $\underline{c^{3}}$ I

COMMAND PROJECT NO. DARCOM PLAN PARA NO. ACV S&T PLAN PG NO.

CECOM 1L162701AH92PO H-2

TITLE/DESCRIPTION

ACCURACY EFFECTS

Gain the technology to predict and ultimately improve the accuracy of gan/projectile systems. Near term objective for tank-investigation sources of "jump" in tank guns and pursue methods of mitigation.

ACV-L REMOTE SENSOR PACKAGE

Develop remote sensor package to maintain commander's overwatch and gunner's target serving capability on armored combat vehicles employing an elevated gun and one-man turret.

ADVANCED COMMANDER'S VEHICLE SIGHT (ACV-I)

Provide automatic cueing and second generation FLIR in MI tank for upgrading commander's performance in target acquisition and positioning.

ADVANCED GUNNER'S SIGHT

Provide automatic cueing and second generation FLIR in Ml tank for upgrading gunner performance in target acquisition and positioning.

ADVANCED IR IMAGING SEEKER AND AUTONOMOUS ACQUISITION

Establish technology base in advanced IR imaging seekers utilizing LWIR focal plane arrays and advanced imaging processing to evaluate IR imaging seeker technology for a variety of applications. Develop autonomous acquisition algorithms for lock-on after launch (LOAL) missile concepts.

ADVANCED LOVA PROPELLANT TECHNOLOGY

Develop new propellant formulations which will provide substantial improvements in survivability to such threats as shaped charge jets and fragment impact.

ADVANCED MILLIMETER OR RF SEEKER FOR LAND COMBAT

Develop a second generation seeker design for land combat (ground and air) applications with a target recognizer and test.

ADVANCED MULTI-PURPOSE ARMAMENT SYSTEM (AMAS)

Develop a lightweight combat vehicle with the following capabilities: Air transportable in a Cl30 and Cl41 aircraft, capable of defeating main battle tanks. Maximize survivability and minimize training and logistic burdens.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ARRADCOM (BRL)	1L162618AH80		н-5
ERADCOM	6.37.10A, DK87-01	.	C-9
ERADCOM	6.37.10A DK87-01	· · · · · · · · · · · · · · · · · · ·	B-8A F-6A G-10A
ERADGOM	6.37.10A DK87-01		B-8A G-10A
MICOM			E −5
ARRADCOM (BRL)			A-6 B-9
MICOM			Α-ύ Β-9
TACOM	1W463835D166		H-6

TITLE/DESCRIPTION

ADVANCED MULTI-SENSOR GUNNER'S SIGHT

Develop Multi-Sensor target acquisition system for an enhanced anti-armor capability. Exploit mm wave radar combined with an advanced FLIR sensor for long range target acquisition and anti-armor missile guidance through degraded weather.

ADVERSE ENVIRONMENT SEEKER DESIGN

Determine the MMW seeker alternatives to imaging infrared seekers for HELLFIRE. Define candidate adverse environment seekers which match the HAWFCAR radar performance.

ALL VISIBILITY TARGET ACQUISITION FOR COMBAT VEHICLE

Develop MMW radar technology to complement thermal imaging systems to provide all weather target acquisitions for both moving and stationary targets.

ANTI-ARMOR MISSILE SYSTEM OPTIMUM DESIGN

Develop design data relative to launcher in-tube flow.

APPLICATIONS FOR MATERIALS

Crack arrest data for bainetic 4140 steel and preliminary data on the heavy metal. Accrue technical date on the fracture properties of heavy metals and composites. Analyze the texture data. Obtain predictive method to custom tailor shaped charges. Strengthen studies of U-Ti and U-Nb alloys initiated. Finalize U-Ti and U-Nb alloy processing study. Characterize material for ballistic performance testing. Perform polynary uranium alloy processing studies.

ARMAMENTS SYSTEMS CLOSE COMBAT-HEAVY

Formulate a need for and a concept for a fire and forget tank fire projectile. Formulate a baseline configuration and demonstrate technical operational feasibility of a tank-fire--fire and forget projectile.

ARMORED COMBAT VEHICLE TECHNOLOGY

Study the feasibility of using one gyro/accelerometer transducer package and computer by combining similar components from within gun stabilization and fire control systems. Study the effect of increased gun unbalance on gun pointing accuracies.

<u>COMMAND</u> ERADCOM	PROJECT NO. 6.37A DK87-01	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO. C-103
MICOM			H-4
ERADCOM	6.37.10A DK70-13	11.11.7	A-8 B-8 G-5
MICOM		2.5.18	C-6 D-10 G-8
ARRADCOM	6.2/AH19		H-5A
ARRADCOM			A-8 B-8 G-5
TACOM	1L263602D188		н −6

TITLE/DESCRIPTION

ASLAV

Provide a lethal kinetic energy warhead in a package consistent with burdens acceptable to light armored vehicles. Explore reduced impulse launch technology for mounting high lethality gun armament systems on relatively light armored vehicles. The 105 SLR Gun will be demonstrated on a light tracked vehicle. Further refinements to the armament system will be made in an exploration of techniques for maximizing the lethality and system performance of armament on light armored vehicles.

AUTONOMOUS ACQUISITION ALGORITHMS AND PROCESSORS

Develop an automatic acquisition/guidance capability for self contained munitions through the development of algorithms and processors for use with imaging sensors.

SALLISTIC MODELING OF SMART PROJECTILES/DEVELOP FIRE & FORGET WEAPONS FOR POINT TARGETS

Develop target detection model using IR, passive millimeter wave and active millimeter wave sensor.

Calculate system performance for IMAAW/STAFF. Study the elimination of background clutter and false target description.

BALLISTIC TECHNOLOGY/PENETRATORS

Develop a fundamental understanding of penetrator mechanisms, materials and geometries that can be used to develop superior armor penetrating munitions in the future.

CHASSIS WEAPON INTERACTION

Develop an accurate model and total vehicle simulation of chassis/turret interaction dynamics to estimate, predict, and experimentally obtain chassis motion disturbance inputs to the gun/turret drive servo systems, and subsequently develop effective chassis motion disturbance cancelling techniques.

CLOSE COMBAT LASER ASSAULT WEAPON (CCLAW) (Project description is classified CONFIDENTIAL.)

CO2 LASER RANGEFINDER

Develop CO₂ laser rangefinder integrated into MI tank with a ranging capability complementary with thermal imager performance even under moderately adverse atmospheric conditions, including fog, haze, dust, and smoke.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ARRADCOM	6.2/AH18		F-6A G-10A
W. OOW			0.04 p.11 0.101
MICOM			C-8A D-11 G-10A
ARRADCOM		10 5 4	11 5
ARRADOOM		18,5,6	H-5
ARRADCOM	1L162618AH80		H-5
TACOM			H-4
MICOM	1L263314D057		н-6 в
ERADCOM	6.37.10A DK87-06	9.9.22	B-6 G-10 F-6

TITLE/DESCRIPTION

COMBAT VEHICLE ANTI-ARMOR

Improve Gun-Launched KE ROD by reducing sabot weight, employing MOD25M30 propellant at higher pressure, and increasing L/D ratio to improve penetration and reduce drag. Validate small-scale high L/D rod data with soft-launched rods. Demonstrate full-scale composite KE rods for tank guns. Design and test full-scale soft-launched rods. Optimize flight performance of most suitable soft-launched rods. Integrate soft-launched rods with missile carrier. Support systems development of tank gun KE rods. Evaluate materials technology for future generation of KE Penetrators. Test elongated fragment forged by non-axisymmetric warhead. Design and test inductive fuze. Integrate elongated forged fragment with missile carrier. Fabricate and begin test of full scale fly-over, shoot down forged fragment system. Design 150MM Hemispherical (Tandem) HEAT WARHEAD. Demonstrate cold-pressed explosive fill for 105MM HEAT. Conduct full-scale static test of 150MM HEAT. Conduct rocket sled test of 150MM HEAT using advanced hemispherical liner and pressed explosive.

COMBAT VEHICLE ARMAMENT SYSTEM TECHNOLOGY (CVAST)

Provide Lightweight Combat Vehicles with the capability to effectively engage future and follow-on BMP vehicles through application of technologies to improve Ph and penetration capability against improved armor. CVAST will accomplish the desired goal through utilization of modular full solution fire control subsystem and other armament advances including APPSDS ammunition, corrected trajectory projectiles, improved feed mechanisms, self-contained munition technologies, advanced propulsion techniques, etc. Turret integration effort will be concluded more rapidly. A high impulse weapon will be designed, fabricated, installed, and tested. High impulse weapon will be expedited.

COMBAT VEHICLE TECHNOLOGY/ELEVATED KINETIC ENERGY WEAPON PROGRAM

Design and fabricate a technology demonstrator to evaluate a combat vehicle mounting a kinetic energy cannon on variable height trunnions permitting firing from defilade positions, while using natural terrain for protection and concealment.

COMPOSITE COMPONENTS FOR ARMAMENT

Reduce total weight of armament systems by judicious replacement of metal components with organic matrix composites and to improve projectile performance by replacing metallic sabots with composite sabots.

COMPOSITE MATERIALS FOR SABOT APPLICATIONS

Determine the applicability of using composite plastic material for sabots in a wide range of ammunition.

ARRADCOM

COMMAND PROJECT NO. DARCOM PLAN PARA NO. ACV S&T PLAN PC NO. A-8A B-8A ARRADCOM 6.3A, D223 ARRADCOM 1L162617AH19 C-8 E-4 G-9 TACOM 1L162105AH84 A-7 B-7 G-6 AMMRC

H-5

TITLE/DESCRIPTION

CONSOLIDATED PROPELLANTS FOR HIGH VELOCITY AIR DEFENSE ROUND

Maximize the performance of a representative current state-of-the-art automatic cannon using consolidated propellants.

CONTROL SYSTEM DEVELOPMENT (ATAADS)

Provide low cost control systems with large force to weight ratios for FOG-M, shoulder launched and hypervelocity missiles, and for affordable submunitions.

CONVERSION COATINGS FOR DEPLETED URANIUM

Develop conversion coatings for environmental protection of depleted uranium alloy penetrators.

CORRECTED TRAJECTORY PROJECTILE

Develop a system to track target and projectile in flight, predict miss, calculate and transmit correction to projectile which then executes the correction for the purpose of increasing first round hit probability.

CORRELATION OF URANIUM ALLOY AND MECHANICAL PROPERTIES WITH BALLISTIC PERFORMANCE

Obtain subscale ballistic performance data for processed U-3/4 Ti and polynary alloys and to correlate with processing procedure and mechanical properties.

CORROSION AND PROTECTION OF TUNGSTEN ALLOYS FOR KE PENETRATOR APPLICATIONS

Assess the corrosion behavior of tungsten alloys for kinetic energy penetrator application and to develop protective coating for 10-20 year storage life requirement.

DAMAGE ASSESSMENT CONCEPTS

Formulate concepts for an assessment of damage resulting from a hit on target to determine whether additional round expenditure is required utilizing existing or near term sensor technology which will be available in combat vehicles.

DEVELOPMENT OF HIGH DENSITY COMPOSITE PENETRATOR

Develop a class of tungsten wire reinforced uranium composite material for penetrator application. Make determinations in areas of material design, processing, characterization, and penetrator proof test and to define and carry out a development program properly phased for this purpose.

COMMAND ARRADCOM (BRL)	PROJECT NO. 11,162618AH80	DARCOM PLAN PARA NO.	ACV S&T PLAN PC NO. A-7 B-7 G-6
MICOM		4.5.11	C-6 D-10 G-8
AMMRC	1L62105AH84		A-7 B-7 G-6
ARRADCOM	АН19	17.8.6	B-6
AMMRC	1L62105AH84		B8
AMMRC	1L62105AH84		A-6 B-9 G-7
ARRADCOM	AH19	17.8.3	Н-6А
AMMRC	1L263102D071		A-8 B-8A

This Document Reproduced From Best Available Copy

FIREPOWER

TITLE/DESCRIPTION

DEVELOPMENT OF IMPROVED VERY HIGH BURNING RATE PROPELLANTS

Develop propellants with very high burning rates and structural strength characteristics sufficient to withstand high dynamic loads.

DYNAMIC MUZZLE SENSING

Provide a means of detecting and compensating for motion of the gun tube muzzle in a dynamic environment due to tube flexure thereby coupling the gun muzzle to the LOS for optimal fire initiation.

ELECTROMAGNETIC PROPULSION

Achieve hypervelocity (3000-6000 meter per second) with armor piercing kinetic energy projectile for enhanced penetration through electromagnetic propulsion while not sacrificing fire control, rate of fire, mobility or supportability requirements.

ENERGY MANAGEMENT

Provide solutions to problems encountered in using smokeless propellants in technical missile propulsion systems. Perform specific studies to optimize side-exhaustive nozzles, to explore energy management techniques providing soft launch capability in a single flight motor, propellant extinguishment techniques, boost/sustain thrust ratios, and lower limits of operation.

FIBER OPTICS GUIDANCE DEMONSTRATION (FOG-D)

Demonstrate the possibility of fiber optics guidance for missile applications.

FIBER OPTICS GUIDED MISSILE (FOG-M)

Develop prototype test missile and demonstrate closed loop target acquisition and tracking during flight test using a fiber optic data link. Demonstrate feasibility of both ground and helicopter launch, to include a vertical launch mode.

FIRE CONTROL FOR HIGHLY MOBILE COMBAT VEHICLE OPERATIONS

Increase effectiveness in acquiring and engaging multiple maneuvering target under "dirty" battlefield conditions while on the move.

FIRE CONTROL/WEAPON SYSTEMS INTEGRATION

Integrate fire control technological efforts into demonstratable systems for future applications and product improvement for existing systems.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ARRADCOM			G-9
ARRADCOM	АН19		F-6A G-10A
ARRADCOM	1L662603AH18 +DARPA G10 62702E	19.7.1	G-10
MICOM		2.5,22	н-6А
MICOM			н5
MICOM		9.9.9	C-8 D-12 G-4
ARRAD COM	2.7.1 17.8.1	17.8.4	G-10
TACOM	1L263631D014		н-6

TITLE/DESCRIPTION

FOG PROCESSOR

Develop a photonic computer for target acquisition, cueing, automatic tracking, and discrimination for FOG (Fiber Optics Guided) missile. Demonstrate the application of the optical computer to reduce the operator's workload, by providing an auto-cueing to targets of interest, and an automatic track to impact if so desired.

FORWARD AREA LASER WEAPON (FALW)

(Project description is classified CONFIDENTIAL.)

FULL SCALE DYNAMIC SIMULATION

Develop a total tracked vehicle simulation of chassis/turret interaction dynamics and laboratory testing techniques to estimate, predict, and experimentally determine chassis motion disturbance inputs to the gun/turret drive servo systems. The dynamic interactions between the turret servo systems and vehicle chassis compliance, and track and gun tube vibrations which constitute the most serious disturbance inputs affecting the performance of the total combat vehicle system will be modeled, tested, and analyzed. The gun positioning error will be related to these disturbance inputs and system trade-off and error budget analyses conducted. These will be used to determine and quantify vehicle/weapon and man/vehicle/weapon interaction dynamics, limitations and performance requirements necessary to maintain target pointing accuracy as a function of terrain type, suspension level, horsepower, maneuver and turret control system. The Dynamic Analysis and Design System modeling method will be the theoretical basis for the analytical effort and TACOM's motion base and ride dynamics simulation facility will be the primary source of experimental data for model validation and proof of principal purposes.

FULL SCALE SYSTEM SIMULATION

Support and accelerate advanced development of Combat Vehicle Component Concepts resulting from TACOM and other government agency basic and applied research and industrial IR and D efforts. The mechanism by which the above will be accomplished is laboratory and field hardware-in-the-loop experimental testing. Combat vehicle subsystem performance tests will be conducted in the laboratory to identify and quantify component operational characteristics and their contribution to the total system capability. In support of the above, the following approach will be initiated: (1) Utilize HIMAG & HSTV-L as research tools to advance Fire Control/Weapon system development, (2) conduct technology product demonstrations of gun/turret positioning systems and target acquisition and engagement components, and (3) optimize man/machine interface devices and controls.

<u>COMMAND</u> MICOM	PRCJECT NO.	DARCOM PLAN PARA NO.	G-4
місом	1L263314D056		н-6В
TACOM	АН91	2.4.42	н-6в

TACOM D014 2,4,42 H-6B

TITLE/DESCRIPTION

FUNDAMENTALS OF SENSITIVITY/VULNERABILITY INSENSITIVE HIGH EXPLOSIVES AND PROPELLANTS

Provide explosive/propellant formulations less sensitive/vulnerable to detonation/ignition by enemy action, setback, fire, hot gun tubes.

GUNNER RESPONSE TO WEAPON RECOIL

Assess the effects of firing recoil on gunner's performance and to develop gunner station design requirements which will minimize the effects of firing recoil.

- HELAST/DEVELOPMENT AND ASSESSMENT OF FIRE CONTROL SYSTEMS FOR COMBAT VEHICLE SYSTEMS

 Describe system performance requirements for combat vehicle fire control systems which enable more effective gunnery performance against tactically behaving targets under more realistic battlefield conditions.
- HICH DENSITY KINETIC ENERGY PENETRATOR MATERIALS

 Develop high density cemented tungsten alloys with superior reproducible ballistic mechanical properties to defeat monolithic and composite multiple armor targets at high angles of attack and extreme ranges.
- HIGH PERFORMANCE COMBAT VEHICLE STATIONARY PLATFORM FIRE CONTROL

 Develop and demonstrate fire control subsystems which enhance the engagement of both stationary and dynamic targets from a stationary platform.

HIGH VELOCITY AT-MUNITIONS

Evaluate igniter design, sabot and slug designs for energy, velocity increases. Demonstrate energy gains at target in ¼ scale prototype round. Establish baseline aeroballistic performance. Establish full scale projectile/gun requirements. Evaluate ignited design, sabot and slug designs for energy, velocity increases and demonstrate the energy gains at target in ¼ scale prototype round.

- HIGH-ENERGY EXPLOSIVES & PROPELLANTS/FORMULATION OF HIGH FORCE PROPELLANTS

 Provide higher-forced propelling charges to enhance kinetic energy penetration performance in anti-tank applications.
- HYDROSTATIC EXTRUSION OF TUNGSTEN ALLOYS

Develop warm hydrostatic extrusion process and extrude uncracked, brittle tungsten alloy with superior mechanical properties. Test extruded billets for ballistic performance.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NC.
ARRADCOM	АН 60/АА АН 18/UA		н-4
HEL			н-6
HEL		17.8.4	н–4
AMMRC	1L162105AH84		A-8 B-8 G-5
ARRADCOM		17.8.7	A-6 B-9 G-7
ARRADCOM	6.2/AH80		B-8A G-10A
ARRADCOM	AH 60/AM AH 18/UB	19.6.1	A-7 B-7 G-6
AMMRC		·	A-8A B-8B

TITLE/DESCRIPTION

HYPERVELOCITY PENETRATION INVESTIGATIONS

Determine experimentally the armor penetration hypervelocity payoffs for a variety of novel penetrator and advance armor designs.

IMPROVED 105-MM AFFSDS-T

Demonstrate an improved 105-MM APFSDS-T round that will give the M1, M60Al, M60A3 tanks the ability to defeat the postulated Soviet armor threats through the 1990's.

IMPROVED CONVENTIONAL ARMAMENT SYSTEM

Provide final conceptual armament systems and preliminary system geometry decisions. Provide component testing. Develop technology demonstrator (test bed) for a tank armament system clearly adequate to the task which will be assigned. Provide an armament system for integration into TACOM Future Close Combat Vehicle (FCCV) test bed activities in the FY87 timeframe.

IMPROVED NON-STANDARD CONDITION SENSOR

Develop, fabricate, and evaluate sensors for the measurement of non-standard conditions associated with accurate engagement such as air temperature, air density, grain temperature, and tube wear. These sensors will eliminate the need for manual input of such data into the fire control ballistics solution.

IMPROVEMENT OF GUN TUBES FOR REDUCED WEAR AND EROSION

Improve the wear and erosion of gun tubes so that high performance armor systems such as ICAS can be developed with a war life of 250-500 rounds.

INDEPENDENT COMMANDER'S THERMAL VIEWER

Develop an affordable thermal viewer that will provide the MI commander with an independent target acquisition capability to enhance the target servicing capability of the MI weapon system.

INERTIAL COMPONENT DEVELOPMENT (ATAADS)

Develop a low cost, solid state, thin film transistor accelerometer with a dynamic range of 10^6 . This accelerometer could be combined with the micro-optic gyro in the development of a solid state IMU. Develop a low cost, solid state passive micro-optic laser gyroscope that can operate in a 1000 deg/sec environment with a driff of 1 deg/hr. Develop and deliver a vibrating beam accelerometer using a miniature resonator having an overall length of one inch and a diameter of one inch.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T FLAN PG NO.
ARRADCOM (BRL)			н4
ARRADCOM			A-7 B-7 F-6 C-6
ARRADCOM		2,5,23	B-8 G-9
ARRADCOM	АН19		E-4 F-6A G-10A
ARRADCOM		19.5.1	B-6 G-7
ERADCOM	6.37.10 DK87-01	11.11.5	B-6
MICOM		3.4.17	A-8 B-9 C-6 D-10 E-4 F-6 G-8

TITLE/DESCRIPTION

INFRARED SEEKER/SENSOR TECHNOLOGY

Develop a lower cost advanced scanning FPA seeker operating in the 8-10u band. Provide a fire and forget, day/night operational capability for application to HELLFIRE and FOG-M. Demonstrate commonality applications to Air Force and Navy weapons. Define a Joint Service Seeker development effort with the other services as a follow-on to JSS. Utilize VHSIC electronics technology for seeker packing to missile configuration.

INTEGRATED OPTICS (6.1 RESEARCH IN MSLS AND HEL)

Develop and demonstrate practical integrated circuits (as opposed to conventional elements) for visible, IR, and submillimeter sensor seeker systems applicable to brilliant weapons.

INTEGRATED PROCESSING SYSTEM

Provide computational capacity required for auto track, maneuvering target prediction, auto-cue, digital control and stabilization, ballistics within volume constraints of combat vehicle.

IR SEEKER FOR TERMINALLY GUIDED WEAPONS

Demonstrate by captive flight tests and by simulations or analysis an infrared body fixed guidance approval for TGSM.

KINETIC ENERGY GUIDED MISSILE

Demonstrate various technologies (integral boost sustained propulsion, low cost structure, beamrider guidance and KE penetrators) required for a cost effective anti-tank weapon system.

KINETIC ENERGY MISSILE

Demonstrate technical feasibility and develop a 54 KM Kinetic Energy Warhead HAW(G) class missile system. Provide the user with a low cost light weight low volume anti-tank missile system adaptable to a variety of vehicle launch platforms including helicopters.

KINETIC ENERGY PENETRATORS FOR GUIDED MISSILES/HYPERVELOCITY MISSILE PENETRATORS

Design and establish the performance of penetrators which are heavier than the XM829 penetrator.

KINETIC ENERGY PENETRATORS FOR GUIDED MISSILES/OATS-NON AXISYMMETRIC (3D)

Deliver the performance demonstrated by the 2D or Axisymmetric OAT in warhead which can be packaged in a 4-4.5" missile or rocket.

KINETIC ENERGY PENETRATORS FOR GUIDED MISSILES/SPIKE

Validate the extrapolation of the 75MM KE penetrator to the spike weight and L/D.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
WICOM			H-6B
			•
MICOM	АН49		H-6A
ARRADCOM			B-6 C-8
MICOM			H-4
MICOM	•		C-7 D-11 G-4
місом			C-8A D-11 G-10A
ARRADCOM		21.6.1	C-6 D-10 G-8
ARRADCOM		21.6.1	G-9
		-	
ARRADCOM		21.6.1	H-6
inital Door			•• •

TITLE/DESCRIPTION

LARGE CALIBER AND NUCLEAR ARMAMENTS TECHNOLOGY/FUZE TECHNOLOGY-FZ FOR TANK AMMO

Develop fuzing to maximize effectiveness of heat munitions such as the M456 and XM815/XM830. Increase effective penetration and kill of enemy tanks and air burst fuzing to provide a self-defense capability against sagger sites and helicopters.

LIGHT ARMORED VEHICLE EVALUATOR

Provide low cost night vision systems capability for light armored vehicles in support of the rapid deployment force.

LIGHT WEIGHT LAUNCHER DESIGN (COMPOSITE)

Develop the use of lightweight design techniques as applied to shoulder fixed and towed rocket launchers.

LOW COST COMMON MODULE FIRE CONTROL

Provide low cost fire control components and subsystems which will be common to all vehicle weight classes, weapon systems, and operational requirements.

LOW COST IMACING SEEKER OPTIONS

Assess the hardware potential of various imaging seeker FOV/resolution configurations for FOC-M application.

LOW VOLUME HYPERVELOCITY MISSILE SYSTEM

Demonstrate technical feasibility and develop a 5+ KM kinetic energy warhead NAW(G) class missile system. Provide the user with an improved TOW vehicle successor/complement with combined anti-tank/anti-air capability.

LP TECHNOLOGY

Develop liquid propellant technology to allow decision on development of LP weapon system.

MI MARK III NIGHT SIGHT

Provide automatic cueing and second generation FLIR in MI tank for upgrading gunner performance in target acquisition and positioning.

MILLIMETER COMMAND GUIDANCE

Develop countermeasure resistant, high rate of firepower, adverse environment guidance links for hypervelocity anti-armor missiles.

MICOM

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM (HDL)	1L662603AH18~D		A-6 B-9 G-7
ERADCOM	6.37.10A DK70-02		E-4 F-6
MICOM			·H-6A
ARRADCOM			G-9
WICOM			C-8A D-11 G-10B
MICOM		2.5.20	C-8 D-12 G-14
ARRADCOM	АН80	19.7.2	G-10 F-6
ERADCOM	6.37.10A DK87-01		B-8 G-5

H-6A

TITLE/DESCRIPTION

MINI-STARTLE

Demonstrate 95 GHZ radar capability with miniature antenna for fire control prior to engineering full scale development.

MINIMUM SIGNATURE MOTOR FOR ANTI-TANK APPLICATION

Increase kill probability and system performance. Reduce system vulnerability and system signature.

MM WAVE AND LASER COMMAND BEAMRIDER

Develop countermeasure resistant, high rate of firepower, adverse environment direct fire guidance links for common guided anti-tank missiles.

MULTI-ENVIRONMENT ACTIVE RF SEEKER (MARFS) TEST BED

Develop, test, and evaluate a RF seeker capable of tracking both stationary and moving targets in clutter.

MULTI-SENSOR TARGET ACQUISITION SYSTEM (MTAS)

Develop Multi-Sensor target acqisition system for enhanced combat capability. Exploit mm wave radar combined with thermal imaging to provide all visibility surveillance/fire direction.

NEXT GENERATION OF PROPELLANTS

Develop or modify propellant ingredients which expand the burning rate range and reduce afterburning of minimum smoke propellants.

NOISE REDUCTION OF CLOSE COMBAT WEAPONS

Develop the techniques, design approaches and understanding needed to reduce the impulsive noise of rocket motors as it affects man or machine interfaces.

OPERATIONAL AND MAINTENANCE SIMPLIFICATION OF COMBAT VEHICLE FIRE CONTROL

Develop techniques for the simplification and maintenance of combat vehicle fire control systems capable of being incorporated as a standard for future development.

OPTICAL CORRELATOR TARGET CUEING

Demonstrate target cueing and acquisition aided by an optical correlator as applied to missile systems with optical fiber data link.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	6.37.10A DK87-01		A-7 B-7 G-6
MICOM		4,5,14	C-8 D-12 G-7
MICOM			C-7 D-11 G-4
MICOM	,	4.5.16	A-6 B-9
ERADCOM	6.37.10A DK70~31		B-8A G-10A
WICOM		19.6.3	C-8 D-12 G-9
MICOM			H-6A
ARRADCOM		17.8.3	GA
місом	<i>,</i>		н-6А

TITLE/DESCRIPTION

OPTICAL GUIDANCE DATA LINKS

Develop countermeasure resistant, high rate of firepower, reduced exposure time, adverse environment direct fire guidance links for anti-tank missiles, while retaining accuracy, target selectivity, and low cost of present direct fire missiles.

PARTICLE BEAM TECHNOLOGY

Develop and demonstrate the basic technology for achieving a mobile lightweight device capable of operating in the battlefield. Assess associated target effectiveness and military applications.

PLUME/LASER UNGUIDED MISSILE EXPERIMENT

Demonstrate CO₂ laser beam rider guidance link through a minimum smoke hypervelocity rocket exhaust flight plume using existing SPARK missile hardware.

PRECISION AIM TECHNOLOGY

Increase the effectiveness of aircraft armament and fighting vehicles against both air and ground point targets as well as air defense systems against aircraft and missile targets by automatically firing controlled shots from gun tubes undergoing forced vibrations resulting from mount motion.

PROCESSING TECHNOLOGY OF TUNGSTEN ALLOYS

Develop in-bouse P/M processing techniques to produce 90% tungsten alloys (density = 17 g/cm³) with improved dynamic mechanical properties, and to correlate subscale ballistic performance with these properties.

PRODUCTIZE CO2 MODULES

Productize critical common module components for carbon dioxide laser rangefinders for combat vehicle use.

PROJECTILE STRUCTURAL INTEGRITY

Develop more cost effective sabots through the use of cast metals, fiber-reinforced aluminum or molded graphite fiber epoxy composites.

PROPULSION-MUNITION INTERFACE TECHNOLOGY/ADVANCED PROPELLANTS/WV ADVANCED ARMOR PROPELLANTS

Demonstrate a muzzle velocity increase of about 4% (200 ft/sec) using a high force nitramine propellant with conventional APFSDS rounds at 60 KPSI.

PROPULSION-MUNITION INTERFACE TECHNOLOGY/CHARGE DESIGN TECHNOLOGY

Demonstrate the feasibility of increased muzzle velocity with a propelling charge of APFSDS rounds.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
MICOM			H-6A
ARRADCOM (BRL)	1L162618AH80	19.7.4	н-5
MICOM			C-7 D-11 G-4
ARRADCOM (BRL)	1L162618AH80	17.7.6	A-8 3-8 C-7 D-11 E-4 F-6 G-5
AMMRC			A-8A B-8A
ERADCOM	6.37.10, DK70-26		н-4
ARRADCOM	1L162618AH80		Н-6В
ARRAD COM	АН-18-X X5В		B-6 G-7
ARRADCOM	AH18-X		B-6 G-7

TITLE/DESCRIPTION

PROTOTYPE 10.6 MICRON CROSSWIND SENSOR FOR TANKS

Develop a crosswind sensor capable of integration into a tank fire control system to increase the probability of first round hits of the main gun by decreasing the meteorological wind error contribution to the error budget of tank gunners.

QUANTIFICATION OF ROCKET MOTOR SIGNATURE

Validate experimental techniques and develop extended capability to conduct propulsion signature measurements.

QUANTIFY PROPULSION SIGNATURE IMPACT

Validate experimental techniques and develop extended capability to conduct propulsion signature measurements. Develop models to predict propulsion signature interaction with guidance systems using laboratory data as a basic input.

RAM HARDENING OF RANGING ELECTRONICS

Productize critical common module components for carbon dioxide laser rangefinders which will provide eye safe, FLIR compabile performance in smoke, fog, haze, etc.

RAPID SOLIDIFICATION TECHNOLOGY FOR ARMAMENT MATERIALS

Exploit rapid solidification technology as a means of producing high performance armament materials.

RESEARCH IN PHYSICS OF ARMAMENT (COMPOSITE HEAVY METAL PENETRATOR MATERIALS)

Develop tungsten reinforced depleted uranium penetrator material for enhanced launch integrity/terminal performance of K.E. rounds through exploitation of composite technology.

RESEARCH IN PHYSICS OF ARMAMENT (ENHANCED WEAR AND EROSION)

Develop refractory coatings/homogenous materials for enhancement in erosion resistance.

RESEARCH IN PHYSICS OF ARMAMENT (FUNDAMENTALS OF MUZZLE BLAST AND CONTROL)

Develop model to quantitative wave components in muzzle blast and technique for blast reduction.

RESEARCH IN PHYSICS OF ARMAMENT (WEAPON DYNAMICS)

Define physical factors contributing to dynamic response of weapon system and develop mathematical models to formulate the basis for quantitative design methodology.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM (ASL)	AH71/DO		в-6
MICOM			н-6
			н-6в
MICOM			n-0B
ERADCOM	6.37.10, DK70-26		B-8B F-6A G-10B
ARRADCOM	АН84 (FY81) АН19 (FY82)		G-9
ARRADCOM	АН60/В	18.7.2	A-7 B-7 G-6
ARRADCOM	Ан60/В		H-4
ARRADCOM	Ан60/В		H-4
ARRADCOM	AH60/B		н-6

TITLE/DESCRIPTION

RESEARCH OF HIGH DENSITY TUNGSTEN PENETRATOR ALLOYS

Optimize 90-95% tungsten composites of various constituents with respect to processing variables, metallurgical and mechanical properties for best ballistic performance.

ROBOTICS

Design a concept for a mobile robotic launcher system in concert with the Air-Land Battle concept of the new Army.

ROCKET ASSIST KINETIC ENERGY

Develop a KE round which provides high kinetic energy lethality with reduced impulse launch.

SELF FORGING FRAGMENT WARHEAD

Develop a non-axisymmetric explosively forged fragment warhead which will produce a stabilized rod slug.

SHAPE CHARGE TECHNOLOGY

Design and demonstrate a 150MM heat round capable of defeating the FST anywhere within the frontal arc of protection.

SHAPED CHARGES

Improve the performance of shaped charges in fixed calibers.

SMALL CALIBER AUTOMATIC VEHICLE FIRE CONTROL

Prevelop low-cost, operationally simple, and highly reliable automatic cannon fire control systems allowing enhanced target angagement capability against point targets using a high rate of fire.

SOLID FUEL RAMJET (SFRJ)

Develop and test the 35-40 MM fin and spin stabilized SFRJ. Optimize and finalize the selection of subcaliber SFRJ. Provide DTII testing of SFRJ training munition. Start new AD programs with DARPA transition. Fabricate and test for flight performance of candidate 75MM SFRJ training round. Evaluate and continue tank training round, optimizing nozzle diameter, injector height, effect of fuel additives and fin/spin stabilization. Fabricate and final test full up optimal training round. Start new and AD SFRJ program with DARPA transition.

COMMAND	PROJECT NO.	DARCOM PLAN FARA NO.	ACV S&T PLAN PG NO.
AMMRC	1L162105AH84		A-6 B-9 G-7
MICOM		11.10.5	н-6в
ARRADCOM			A-8 B-8 G-5
ARRADCOM	AH18, TAl1		G-8
ARRADCOM		•	G-9
ARRADCOM	AH18, TAll		C~6 D-10 G-8
ARRADCOM		17.8.2	C-8
ARRADCOM	6.2/AH80		A-8A B-8A

TITLE/DESCRIPTION

SPECIAL MATERIALS FOR LONG ROD PENETRATORS

Establish the processing method and parameters for the production of special materials for long rod penetrators with the strength required to withstand launching forces as well as armor penetration forces and with the deformation capabilities required in the production process.

STRUCTURAL INVESTIGATION: SABOT/PROJECTILE

Develop more cost effective Sabots through the use of cast metals, fiber-reinforced aluminum or cost graphite fiber/epoxy composites.

STUDY OF TANK GUN JUMP PHENOMENA

Quantify the occasion variation in jump within a given tank system. Quantify the differences in mean jump exhibited by different tanks. Use the jump data base to identify possible fire control and/or alignment procedures for improving tank system delivery accuracy.

SUBMILLIMETER DEVICES (6.1 RESEARCH IN MSL AND HEL)

Demonstrate practical near-millimeter wave integrated circuits (as opposed to current oversized quasi-optics) for missile systems.

SUBMILLIMETER WAVE (6.1 RESEARCH IN MSL AND HEL)

Evaluate the potential for using the spectral region around one millimeter to detect, identify, and direct fire onto hostile targets obscured by fog. smokes, and other battlefield obscurants.

SYNTHESIS OF HIGH-ENERGY EXPLOSIVES/SUPERENERGETIC EXPLOSIVE FORMULATIONS

Provide 50% enhancement in shaped-charge and SFF penetration of armor by use of superenergetic explosives.

TANK SMART MUNITIONS

Improve the direct fire accuracy of munition and insure high kill probability. Permit effective engagement of threat targets at extended ranges and complements conventional munitions.

TECHNICAL VULNERABILITY REDUCTION

Reduce vulnerability of visible sighting systems to laser radiation.

TGW CORRELATOR (6.1 RESEARCH IN MSL AND HEL)

Develop a fit and function demonstration of the optical correlator by building a photonic computer which accomplishes top view correlation of a 4 inch diameter space.

COMMAND	PROJECT NO. 1L263102D071	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO. A-8A B-8B
ARRADCOM		18.7.1	H- 5
AMSAA			H-5
MICOM			н-5
MICOM		5.5.10	H- 6
ARRADCOM	АН 60/АМ АН 18/UC		A-7 B-7 G-6
ARRADCOM	6.2/AH18	·	A-8A B-8A G-10A
ARRADCOM			н-4
MICOM			C~6 D-10 G-8

TITLE/DESCRIPTION

THERMOMECHANICAL TREATMENT FOR IMPROVED PERFORMANCE OF DU-3/4 Ti KE PENETRATOR ALLOYS

Develop thermomechanical treatments which will refine grain size, retain texture, and further reduce residual stresses of the DU 3/4 Ti alloy. Improved ballistic performance, and process simplification with concomitant cost reduction are the ultimate goals of the program.

VEHICLE DYNAMIC SENSORS

Provide low cost sensors which will provide information on own-vehicle dynamics to the fire control processor. Where appropriate, compensation will involve sensor definition, placement, and development of compensation techniques.

VERTICAL LAUNCH CONCEPTS DYNAMICS

Prepare concepts of FOG-M in or on various launch vehicles. Simulate launcher and rocket motion of vertical launched missile to determine launch errors. Investigate various eject concepts for launching missiles.

VERY LONG KINETIC ENERGY PENETRATORS

Demonstrate high penetrator lethality at greatly reduced weight. The use of current penetrator technology causes severe weight and volume problems for future kinetic energy missiles.

VASIC FIRE AND FORGET SEEKER

Develop advanced scanning (8-10 micron) infrared seeker technology for fire and forget applications. Demonstrate advanced detector assemblies using focal plane array technology to improve seeker performance and reduce unit costs.

WARHEAD/FUZE TECHNOLOGY SYNTHESIS

Insure that warhead and fuze concepts and developments for Army missile systems reflect the total technology advancements and products of all DoD investments. This will be accomplished by demonstrating integrated prototype warheads and fuzes in dynamic testing which support future Army Missile Laboratory weapon concepts.

WEAPON STATION CONTROLLER

Develop an analysis, design and test methodology, employing modern control theory design and synthesis techniques to assess, design, and develop optimal controllers to improve the dynamic performance of the combat vehicle weapon system interaction dynamics.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
AMMRC	1L62105AH84	· · · · · · · · · · · · · · · · · · ·	A-8 B-8 G-5
ARRADCOM	AH19	17.8.4	E-4 F-6A G-10B
MICOM			H-6B
	4		
MICOM			C-8A D-12 G-10B
MICOM		2.5.12	C-7 D-11 G-4
MICOM			C-8A D-12 G-10B
WP 4 70 70 70 70 70 70 70 70 70 70 70 70 70			
HODAR			H~5

TITLE/DESCRIPTION

MEAPON STATION INTEGRATION

Develop advanced weapon station components, sub-systems, and techniques into demonstrable state-of-the-art weapon systems for turret/weapon integration.

WEAPON SYSTEM ACCURACY

Gain the technology to predict and ultimately improve the accuracy of gun/projectile systems. Near term objective for tanks: investigate sources of "jump" in tank guns and pursue methods of mitigation.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	1L162601AH91	2.7.2	В-6
•			
ARRADCOM	1L16218AH80		н-6в

TITLE/DESCRIPTION

20-40 TON TRACK

Design and develop a new track and sprocket for vehicles in the 20-40 ton weight range. Six thousand mile track life compared to present 3,000 miles. Reduce cost/mile by 30%. Reduce RAM-D characteristics by 30%.

45-65 TON TRACK

Development of a highly functional and economical common track for 45-65 ton weight class combat vehicles featuring quick disconnect replaceable chevron pads, improved tractive efficiency, and designed to accommodate both forged, cast, and fabricated manufacture. Expected benefits include goals of: basic track life equal to vehicle rebuild cycle; 75% increased pad life; interoperability on M-1, M48/M60 and M88; broadened production base; and reduced overall maintenance burden.

ADIABATIC ENGINE PROGRAM

Develop an advanced high output diesel engine making use of high temperature materials to insulate combustion system components allowing operation at high temperatures without the use of a conventional cooling system. The engine will use a power recovery turbine to capture the greatly increased exhaust gas energy and will be highly fuel efficient, compact, light weight, and low cost per HP.

ADVANCED ADIABATIC TECHNOLOGY

The overall objective of this work is to develop novel and advanced technology for application within "adiabatic", high-temperature type engine applications. The concept of engine friction minimization through concepts such as ringless pistons and ceramic, unlubricated bearings is integral to the program. The work further emphasizes: high-temperature lubrication and wear (including solid lubricants), high temperature advanced material design and development, and advanced component design and development. Success of the program will allow both improved fuel economy and elimination of the engine oil system.

ADVANCED AIR FILTRATION

Develop more efficient combat vehicle engine air cleaning systems which significantly extend the vehicle maintenance interval. Develop a dust detector and indicator which alerts the operator of an air filter malfunction. Integrate the NBC protection functions into the engine air filtration system.

ADVANCED COMPOSITE MATERIALS

To develop critical components of reduced volume and/or weight for advanced design utilizing metallic and non-metallic composites.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	1L263631D424	2.4.12	G-15
TACOM	1L2636 1D424	2.4.14	A-11 B-12 G-13
TACOM	1L263621DG07	2.4.26 23.4.1	F-9 G-13
TACOM	1L162601AH91	2.4.26 23.4.1	F-9 G-13
TACOM	1L162601AH91	2.4.5	A-9 B-10 C-9 D-13 E-5 F-7 G-11
TACOM	1L162601AH91	2.4.20 2.4.21 8.16.3	A-10 B-11 C-10 D-14 E-6 F-6 C-12

TITLE/DESCRIPTION

ADVANCED DIESEL - 1000 HP

Upgrade the Gummins VTA 903 (Military Rating 500 HP) engine to 1000 HP utilizing advances in the state-of-the-art which will help to provide a high power density engine while maintaining the original structural design limitations of the engine. The engine design utilizes fixed low compression ratio, high efficiency high boost turbocharging and turbocompounding.

ADVANCED INTEGRATED PROPULSION SYSTEM COMPETITIVE DESIGN

Design a complete power package assembly to include engine, transmission, cooling system, air filtration, auxiliary power generation, signature limitation, diagnostic and maintainability concepts. This package will be housed in a 33% smaller compartment and given greatly increased fuel tolerance and efficiency.

ADVANCED TACTICAL POWER SOURCES

To develop high rate, high energy density (2-4 times present lead-acid batteries), cost effective rechargeable batteries to overcome operational deficiencies and cycle life problems of present batteries for M1, other combat vehicles down to low temperatures.

ADVANCED TRACK AND SUSPENSION MATERIALS/STRUCTURES

Reduced life-cycle-cost through increased life, improved RAM-D and mobility, and reduced component weight.

ADVANCED TURBINE ENGINE/CERAMIC RECUPERATORS

Development of Ceramic Recuperator for gas turbine engine. Capability to operate at higher temperature than currently utilized metals will improve overall engine efficiency.

ANALYTICAL BASE DEVELOPMENT

Development of in-house capability for dynamic computer-aided track component and system design and analysis.

ANALYTICAL BASE HARDWARE

Installation and activation of in-house computer system dedicated to track component and system design and analysis.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	1L263621DG07	2.4.40	F9 G13
TACOM	1L263621DG07	2.4.1	G-14
ERADCOM	1L152705AH94 1L263702DG10		A-11 B-12 C-11 D-15 E-7 F-9 G-13
TACOM	1L263631D424	2.4.36	A-11 B-12 C-11 D-15 E-7 F-9 G-13
TACOM	·	2.4.2 23.4.3	B-12 G-14
TACOM	1L162601AH91	2.4.41	н-8
TAÇOM	1L263631D424		н-8

TITLE/DESCRIPTION

AUXILIARY POWER UNIT, 15 KILOWATT

To upgrade the 10 KW Auxiliary Power Unit to provide 15 KW electrical power for low temperature starting of the vehicle main engine unaided by batteries and to supply critical electric loads for stand-by/silent watch operation requiring low external audibility.

CANE TIP MINE NEUTRALIZING SYSTEM

Develop the capability to disperse and detonate solid high explosives for breaching minefields.

CERAMICS WITH IMPROVED TOUGHNESS FOR VEHICULAR ENGINES

To develop ceramic materials with increased fracture toughness for structural application in vehicular engines.

COMBAT AND TACTICAL SYSTEMS DYNAMICS

Future efforts will entail extending the theory to: Do design sensitivity and optimization studies. Include the flexibility of elements and structural compliance. Couple the rigid body and servo system controller dynamics. Account for intermittent motion. Include the study of "robotics" in order to perform functions in a hazardous environment. Plans also include actual hardware in the loop testing to verify the theoretical methodology.

COMBAT MOBILITY FUELS

Develop capability to permit implementation of fuel prepositioning and rapid field assessments of fuel in storage, depot, or vehicle environments. As part of this thrust, a fuel stabilizer additive is being developed to reduce fuel degradation tendencies.

COMBAT VEHICLE PROPULSION/1000 HP TRANSMISSION

The development of a 1000 HP transmission for tracked combat vehicles in the 35 to 45 ton weight class. The objectives of the program are to reduce weight and volume of transmission thus enhancing survivability by virtue of lower vehicle silhouettes. A modular approach for ease of maintenance will be pursued.

COMPLIANT BUSPENSION SYSTEM

To develop and evaluate a suspension system which automatically changes springing and damping to provide optimum performance over different terrains. This capability would result in improved vibration isolation with accompanying gains in ride quality and gun platform statility over a range of terrains.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM		2.4.44	B-12
MERADCOM	1m263606n608-05	6.5.3	H-8
AMMRC	АН84		н-7
TACOM	1L162601AH91	2.4.43	н-7
		: : .	
MERADCOM	6.11.02.A, 6.27.33.A	8.17.2	A-9 B-10 C-9 D-13 E-5 F-7 G-11
TACOM	1L263621D395		G-15
TACOM	1L162601AH91 and 1L263631D424	2.4.32	G-15

TITLE/DESCRIPTION

CORROSION PREVENTATIVES

Develop new and improved corrosion preventatives for Army and DoD use which respond to unique military requirements and needs. Within this project, a long-life coolant system is to be developed to eliminate maintenance and drain requirements. Also, there is an effort to improve the performance of the current GAA military grease.

CVX-650 HYDROMECHANICAL TRANSMISSION

To develop a hydromechanical steering transmission for tracked vehicles up to 25 tons.

DEVELOPMENT OF NOISE REDUCTION TECHNIQUES FOR LIGHT ARMORED TRACK VEHICLES

Development of technology to reduce track-generated noise.

DRIVERS THERMAL VIEWER

Provide thermal driving capability for combat vehicles which will permit driving in fog, smoke, dust, and other dirty battlefield conditions.

DUAL CHANNEL (BACK UP) CONTROL FOR GAS TURBINE ENGINES, FLUIDIC TECHNOLOGY

Develop a dissimilar fuel control system utilizing fluidics so that start, re-start, and nearly full control is maintained in the event of an electronic control failure.

ELECTRIC HYBRID DRIVE

Analysis and development of hybrid electric systems, i.e., systems employing an engine combined with electric drives. Determination of applicability to tactical and combat vehicles to satisfy high speed and power density requirements along with signal-less operation.

FLUIDIC DAMPER

To develop a fluidically controlled damper capable of sensing terrain induced vibration and adjusting damping according to terrain induced vibration demand.

FLUIDIC HEADING REFERENCE

Develop a fluidic/electronic heading reference unit for armored vehicles.

FRACTURE MECHANICS & STATIC FATIGUE BEHAVIOR OF HELL ENGINE CERAMICS

Structural ceramics have shown promise for usage in heat engines and this has prompted the current surge of mechanical property research. Among the properties that must be evaluated are the fracture toughness, creep resistance and also the resistance to static fatigue. The temperature dependence of these properties must be determined as well as the effect of prolonged exposure.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
MERADCOM	6.11.02.A, 6.27.33.A, 6.31.04.D	8.17.5	A-9 B-10 C-9 D-13 E-5 F-7 G-11
TACOM	1L2636211 395	2.4.4	C-11 F-9
TACOM	1L162601AH91	22.11.2	D-1 5
ERADCOM	6.37.10A DK87-04	15.9.1	G-14
ERADCOM (HDL)	1L162120AH25/03		
TACOM	1L263621D395		
тасом	1L263631D424	2.4.18	A-10 B-11 C-10 D-14 E-6 F-8 G-12
ERADCOM (HDL)	1L152120AH25/03		A-10 B-11 C-10 D-14 E-6 F-8 G-12
AMMRC	АН84		H-7

TITLE/DESCRIPTION

FILL SCALE SIMULATION

To provide a systematic approach to predict and evaluate the combat vehicle system battlefield performance and effectiveness. The process includes the analytical simulation of the vehicle system to assess mobility, agility, firing platform stability, gun pointing accuracy, ride quality and speed. The analytical outputs shall be validated per laboratory experimental simulation and field test evaluation.

FUNCTIONAL FLUIDS

Develop new and improved functional and power transmission fluids for use in present and future Army combat and tactical equipment. The major thrust is to develop a common fluid that will function as an engine oil and transmission fluid in the MI tank.

HIGH MOBILITY ENERGY EFFICIENT SYSTEM

Provide the most energy efficient combination of track, drive, and suspension components with regard to the configuration, weight, function, RAM-D, and life-cycle-cost.

HIGH STRENGTH MATERIALS AND COMPONENTS

To develop a criteria for designing and fabricating large-size components from high strength materials.

HORIZONTAL POSITION AND ATTITUDE SUBSYSTEM

To define the technical parameters and to fabricate and test a brassboard inertial-based system that will provide in real time, the host vehicle's position and pitch and roll attitude.

IMPROVED DRIVER'S HATCH

To design and develop a driver's station which provides buttoned-up practically the same vision/driving performance as with the head outside and maintains the driver's used relationship to the controls, vehicular feel and vehicle behavior judgement. It permits NBC closed hatch operation.

INDEPENDENT EXTERNAL SUSPENSION

Design and develop improved suspension systems with modular units at each wheel station which contain complete springing and damping functions within a compact envelope, mounted exterior to the hull. This approach will eliminate torsion bars and the vulnerable, strut type dampers from tracked vehicle suspensions.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	,	2.4.42	н-7
		٠.	
MERADCOM	6.27.33A 6.31.04D	8.17.4	B-12 G-14
			the same of
TACOM	1L162601AH91	2.4.34	A-10 B-11 C-10 D-14
	1L263631D424		E-6 F-8 G-12
TACOM	1L162601AH91	2.4.19	H-7
MERADCOM	4A762707A855A		A-10 B-1) C-10 D-14 E-6 F-8 G-12
			2 0 1 0 0 12
TACOM		2.4.45	C-11
	•		
TACOM	1L263631D424	2.4.30	G-15

TITLE/DESCRIPTION

LIGHTWEIGHT LAUNCHER DESIGN

Assess state of technology for use of metal Matrix composites and protruded shapes in launcher structures. Reduce the weight of an artillery type launcher to 40% of rockets weight.

LOW COST LAND NAVIGATION

To improve the positioning and heading capability of combat vehicles, mobile artillery and mobile missile launcher system with a moderate cost land navigator having an accuracy of .5-1% distance traveled and heading of less than 10.

LUBRICANTS FOR CONVENTIONAL/NON-CONVENTIONAL ENGINES

Develop lubricants which improve performance and maintenance concepts for existing engine systems within the tactical fleet and to also develop suitable lubricant for future non-conventional engine systems (i.e., the adiabatic diesel engine).

M1 ABRAMS/M60 TRACK IMPROVEMENT

To reduce lif -cycle-cost and reduce maintenance for the MI Abrams and M60 vehicles.

M1 INTEGRATED COUNTERMINE SYSTEM

Initiate total system countermine capability and perform system and engineering analysis for the MI tank.

MATERIALS CHARACTERIZATION (ADVANCED MATERIALS APPLICATIONS)

Measure physical/mechanical/thermal properties of new or improved materials being considered for missile/rocket system applications. This includes conduct of tests on new materials, improved alloys, metal matrix composites, etc. to establish range of property data not available from other sources.

MULTI-PURPOSE DETECTION SYSTEM

Development and demonstration of new concepts for detecting mines and explosives in urban terrain where other approaches fail due to interference and obscuration.

NATO/FOREIGN TRACK ANALYSIS

To achieve commonality of track for NATO Combat Vehicles, and to assimilate foreign track technology into present and future US track systems.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
MICOM			н-8
MICOM			A-10 B-11 C-10 D-14 E-6 F-8 G-12
MERADCOM	6.11.02A, 6.27.33.A 6.31.04.D	8.17.3	A-9 B-10 C-9 D-13 E-5 F-7 G-11
TACOM	1L263621D424	2.4.37	A-11 B-12 C-11 D-15 G-13
MERADCOM	1M263606D608-16	6,5.5	н7
MICOM			н-8
MERADCOM	AH51RE, AH20BM	6.6.4	H-7
TACOM	1L162601AH91	2.4.15	A-11 B-12 C-11 D-15 E-7 F-9 G-13

TITLE/DESCRIPTION

NEC RESISTANT TRACK AND SUSPENSION

Provide non-metallic track and suspension components which are unaffected in NBC and decontamination environments.

NO MAINTENANCE BEARING/SEAL AND ROADWHEEL HUB

To develop and evaluate a self-lubricating bearing/long lasting seal combination which provides maintenance free operation between vehicle overhauls.

OFF-ROAD MOBILITY

Improve vehicle design and performance evaluation methodology in the area of running gear performance, agility and steering, obstacle crossing and off-road drivability.

OXYNITRIDE GLASS-CERAMIC/FIBER COMPOSITES FOR ENGINES

Recent advances in high temperature glass research and in techniques for production of ceramic fibers have created opportunities for development of readily formable, fiber-reinforced glass-ceramics with good high temperature strength and fracture toughness. The objective of this program is to develop and evaluate such composites for use in heat engines.

SCATTERMINE DETECTION

Demonstrate the feasibility of detecting air delivered minefields by modification of a sensor system developed for other purposes.

SELF CLEANING AIR FILTER (SCAF)

To provide combat vehicle Self-Cleaning Air Filtration Systems which increase the service interval by a factor of 10. Self-Cleaning Air Filtration Systems will encompass both diesel and gas turbine powered combat vehicles.

STRUCTURES ANALYSIS/MODELLING TECHNIQUES

Develop efficient techniques for modelling of both metal and composite structures. Reduce storage requirements and provide for more efficient use of computing facilities for SAP 6/7. Develop finite difference programs for analysis of rotationally symmetric shells under discontinuous loadings by both successive time step integration method and MODAL superposition method.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	1L263631D424	2.4.33	A-10 B-11 C-10 D-14 E-6 F-8 G-12
TACOM	1L162601AH91 and 1L263631D424	2,4,38	G-15
TACOM	1L162601AH91		и-7
AMMRC	АН84		H-7
MERADCOM			H-7
TAÇOM	1L162601AH91	2.4.6	A9 B-10 C-9 D-13 E-5 F-7 G-11
MICOM			н-8

TITLE/DESCRIPTION

SYNTHETIC AND ALTERNATE FUELS

Develop a capability that will allow the Army to utilize mobility fuels derived from non-conventional crude sources without affecting mission requirements. Program involves laboratory, engine and systems testing, and fleet tests of candidate products refined from shale and coal conversion processes to assure their suitability in Army equipment. Status: Test programs in progress have been evaluating JP-5 & DFM feels refined from shale oil syncrude. The fuels performed satisfactorily in the tests conducted thus far. Additional shale derived fuels from a different shale extraction process are due for testing during FY82.

TANK-AUTOMOTIVE TECHNOLOGY/ADVANCED TURBINE (CERAMIC COATINGS)

Investigate turbine engine component ceramic heat barrier coatings as a means of increasing cycle temperatures with resultant efficiency increases. A minimum turbine inlet temperature (TIT) of 2500° F., with 7% maximum cooling air (nozzle/rotor) are project goals.

TANK-AUTOMOTIVE TECHNOLOGY/ENGINE CONCEPTS FOR ALTERNATE FUELS

Establish a technology base for development of efficient alternative fuels combustion systems for incorporation in engines for military ground vehicles starting in FY85, through investigation and generation of new technology in the key areas of: (1) Microprocessor Controlled Fuel Injection, (2) Ancillary Componentry Modulation, (3) Sensors, (4) New Alternative Fuel Combustion Processes and (5) the combination of 1 through 4 into new combustion system concepts.

TRACK RETENTION AND CONTROL

Maintain positive track engagement to minimize skipping, misguiding, or loss under all types of operating conditions.

TRACK RUBBER DEVELOPMENT

Increased track pad life with a resultant lower life cycle cost.

TRANSMISSION COMPONENT DEVELOPMENT

To effect reduction in size and weight and to increase the efficiency and performance of current and future transmissions. New and novel materials, examination of the exact duty cycles. Rerating/redesigning components, application of electronic controls, improvements in hydrostatic unit efficiencies, etc. will result in attaining goals.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV SAT PLAN PG NO.
MERADCOM	6.11.02A, 6.27.33A 6.31.04.0		A-9 B-10 C-9 D-13 E-5 F-7 G-11
	·		
TACOM	1L162601AH91	2.4.2 23.4.3	B-12 G-14
		€	
TACOM	1L162601AH91	2.4.27	A-9 B-10 C-9 D-13 E-5 F-7 G-11
TACOM	1L162601AH91 1L263631D424	2.4.23	A-11 B-12 C-11 D-15 E-7 F-9 G-13
TACOM	1L162601AH91 1L263631D424	2.4.35	A-10 B-11 C-10 D-13 E-6 F-8 G-12
TACOM	1L263621D395	2.4.3	A-9 B-10 C-9 D-13 E-5 F-7 G-11

TITLE/DESCRIPTION

VEHICLE ENGINE DEVELOPMENT/ENGINE CONCEPTS FOR ALTERNATE FUELS

Drawing from the technology base established by the 6.2 task, engine concepts for alternative fuels, develop alternative fuels combustion systems for incorporation in existing engines (as modification kits), current development engines and future engines.

WIDE AREA NEUTRALIZATION DEVICE (WAND)

Provide acoustic, seismic, magnetic, etc., signatures of combat vehicles that will defeat remote mines equipped with sophisticated sensors.

WINTERIZATION TECHNOLOGY

Develop a systems approach to the development of standardized winterization equipment for all Army ground vehicles, including self-sustaining multifuel burning fuel fired heaters.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV SET PLAN PG NO.
TACOM	1L1663621DG07	2.4.27	A-9 B-10 C-9 D-13 E-5 F-7 G-11
MERADCOM	AH20~B 1	6.5.1	н-8
TACOM	1L162601AH91		н-8

TITLE/DESCRIPTION

2ND GENERATION CROSSWIND SENSOR

Develop real-time remote wind sensor based on optical techniques that will reduce wind contribution to the error budget of direct fire weapons.

3-5 MICRON FOCAL PLANE ARRAY, LIQUID PHASE EPITAXY

Further develop designs and components for standard 3-5 micrometer thermoelectric cooled detector arrays using liquid phase epitaxy (LPE) growth methods to optimize yield and uniformity.

3rd LASER KADAR TECHNOLOGY DEMONSTRATOR

Develop an advanced laser radar sensor head capable of automatic real-time target classification at ranges to 3 kilometers using 3D target classification techniques when coupled with an appropriate processor.

8-14 MICRON IRDA

8-14 Micron FPA sensor will be integrated for demonstration with existing data processing.

ACOUSTIC SENSORS

To provide the potential for detection, track, and classification of threat vehicles based on the acoustic characteristics generated by the threat vehicle.

ACQUISITION SUBSYSTEM (HEL)

Development of advanced target acquisition, tracking, and fire control techniques for land and air targets.

ACV-L REMOTE SENSOR PACKAGE

Develop remote sensor package to maintain commander's overwatch and gunner's target serving capability on armored combat vehicles employing an elevated gun and one-man turret.

ADDEV OF AUTOMATIC LIQUID AGENT DETECTOR, XM85, XM86

Provides automatic warning of on-target liquid chemical agent rain attacks through a detection mechanism which utilized electrical changes on detector grids from the physical chemical reaction of the agent on the grid.

ADVANCED COMMANDER'S VEHICLE SIGHT

Provide automatic cueing and second generation FLIR in MI tank for upgrading the commander's performance in target acquisition and positioning.

SENS	TNG
OLIO	7110

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	62709DK95A0	11.5.2	B-17 G-19
ERADCOM	DK7002	11.5.3	C-15
ERADCOM	DH95-N0		C-16 F-13 G-20
MICOM	RNT-15	4.5.5	A-14 B-15 C-14 D-17 E-10 F-11 G-17
ARRADCOM	1L162617AH1902	5,8,21	A-13 B-13 C-13 D-16 E-8 F-10 C-16
MICOM	RH-7	16.7.3	A-14 B-15 C-14 D-17 E-10 F-11 G-17
ERADCOM	63710ADK8701		G~18
ARRADCOM	1W763721D60105		A-13 B-13 C-13 D-16 E-8 F-10 G-16
ERADCOM	63710ADK8701	11.11.5	В-16

TITLE/DESCRIPTION

ADVANCED GROUND TO GROUND TARGET ACQUISITION RADAR

Develop advanced signal processing techniques 94 GHZ Radar to allow for target classification and identification.

ADVANCED GUNNER'S SIGHT (ACV-II)

Provide automatic cueing and second generation FLIR in Ml Tank for upgrading gunner performance in target acquisitions and positioning.

ADVANCED MILITARY COMPUTER FAMILY (MCF) PERIPHERALS

Develop smart peripherals much improved over present devices, utilizing MCF hardware and used with MCF.

ADVANCED MULTI-SENSOR GUNNER'S SIGHT

Develop Multi-Sensor target acquisition system for an enhanced anti-armor capability. The technical approach is to exploit mm wave radar combined with an advanced FLIR sensor for long range target acquisition and anti-armor missile guidance through degraded weather.

ADVANCED RADAR TECHNOLOGY

Develop MMW transceiver with programmable signal processor for low probability of intercept (LPIR) and dual frequency radar for improved low angle track. Applications are to gun fire control.

AIRBORNE MINEFIELD DETECTION SYSTEM

Develop an alternate mission payload subsystem for the Army RPV, optimized for high resolution low altitude detection of minefields. Develop a forward deployed ground station to provide hand-off control of the RPV and support the real time processing of transmitted data to facilitate early detection of minefields.

ALL VISIBILITY TARGET ACQUISITION

Develop MMW Radar Technology to complement thermal imaging systems to provide all weather target acquisition for both moving and stationary targets.

ANALYTICAL TECHNIQUES FOR THE DESIGN AND APPLICATION OF SENSORS

Investigate the seismic, acoustic, and electromagnetic signatures of military and intruder-type targets and the theoretical aspects of signature propagation to support the development of environmentally insensitive sensor configurations for detecting, classifying, and/or locating such targets.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	DH95-DO	14.8.5	A-12 B-14 C-12 D-18 E-9 F-12 G-18
ERADCOM	DK87-01		B-19 G-20
CECOM	1x463723p186.02		н-9
ERADCOM	DK87-03		B-19 G-20
ARRADCOM			G-19
MERADCOM	AH2OBM	6,6,1	C-15
ERADCOM	63710ADK7013	11.11.7	B-17 G-19
USAEWES	4A7620AT42/BE3/001		H-10A

TITLE/DESCRIPTION

ARMORED COMBAT VEHICLE HEAVY - NIGHT VISION SYSTEM

Develop advanced all-visibility night vision for crew of the main battle tank based on technology advancements in FLIR components, millimeter radar, multi-functional lasers and auto processing.

AUTO TRACKER

Design and development of an automatic tracker for combat vehicles and determine effect on first round hit probability and fire-on-the-move capability.

AUTOMATED SYSTEMS PERFORMANCE MODELS

Generate E-O sensor, MMW radar, and smart sensor models for future design optimization and conclusion in battlefield simulations and analysis. Develop MMW computer analysis model.

AUTOMATED SYSTEMS UNDERSTANDING

To obtain mathematical models capable of making systems and component design decisions. Testing techniques can be developed from analytic modeling concepts.

AUTOMATIC TARGET ACQUISITION

To provide automatic target detection and classification from FLIR and TV sensors, by image processing techniques.

AUTOMATIC TARGET RECOGNIZER DIGITAL IMAGERY DATA BASE

Develop target and background signature image processing techniques for smart sensors and automated weapons systems and weapons effectiveness studies. Measure and characterize significant features of targets in EO/IR/MMW spectral bands for smart sensor seeker performance assessment and target acquisition modeling. Maintain data base for resulting signatures.

AUTONOMOUS ACQUISITION ALGORITHMS AND PROCESSOR (RE-9)

Development of an automatic acquisition capability for self-contained munitions through the development of algorithms and processors for use with imaging sensors.

BATTLEFIELD ENVIRONMENT WEAPON SYSTEM SIMULATION (BELDWSS/BFWSS) (RG-1)

Perform simulations of weapon system and battlefield environment.

BENCH EVALUATION

To establish laboratory sensor evaluation techniques that will provide repeatable measures for evaluating different sensors that relate to the real world performance of these sensors.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	63710ADK8701		B-17 G-19
ARRADCOM	AH19-F		B-16
ERADCOM	1L162709DH951/SO		H-10
ERADCOM	lL161102A31B		н-9
ARRADCOM	1F262201DA96		A-12 B-14 C-12 D-18 E-9 F-12 G-18
ERADCOM	1L162709DH95/S0		н-9
MICOM	RE-9	2,5,12	н-10
MICOM	RG-1		н-10
ERADCOM	1E263710DK7005		н-10

TITLE/DESCRIPTION

CHEMICAL ALARM TECHNOLOGY

Feasibility evaluation and development of a prototype sampling system which has the capability to monitor ambient air both outside and inside vehicles and provide an early warning to the crew of a chemical hazard.

CO2 LASER RANGEFINDER

Develop CO₂ Laser Rangefinder integrated into Ml tank. Rangefinder will have a ranging capability complementary with thermal imager performance even under moderately adverse atmospheric conditions.

COMMON MODULE MULTI-FUNCTION LASER

Develop highly reliable laser components for use in advanced multi-functional CO2 laser device. This device will provide rangefinding, range rate sensing and remote crosswind velocity sensing.

CONCEPTS OF MINEFIELD BACKGROUND DATA PROCESSING, FILTERING, AND AUTOMATIC SCANNING

Develop, demonstrate, and synthesize new data analysis concepts for evaluating frequency dependent electromagnetic response from mine/minefields and terrain backgrounds. The evaluation will be accomplished using existing and evolving data bases and will be directed toward identifying methods of consistently and efficiently separating mine/minefields from the background. The results will be directly applicable to the reduction of terrain effects on the development of automatic process for mine detection equipment.

CORRECTED TRAJECTORY PROJECTILE

Development of a system to track target and projectile in flight, predict miss, calculate and transmit correction to projectile which then executes the correction for the purpose of increasing first hit probability.

DAMAGE ASSESSMENT CONCEPTS

Utilizing existing or near term sensor technology which will be available in combat vehicles, formulate concepts for an assessment of damage resulting from a hit on target to determine whether additional round expenditure is required.

DIGITAL TURRET DEMONSTRATION

To demonstrate feasibility of a high performance digital weapon pointing and tracking system capable of engaging multiple maneuvering targets and compensating for error sources associated with barrel flexure, nonlinearities, base motion and recoil disturbances.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ARRADCOM	1L162706A5533I	·	A-13 B-13 C-13 D-16 E-8 F-10 G-16
ERADCOM	63710AT K8706	9.9.22 11.7.2	B-16
ERADCOM	63710DK8701	11,11,8	B-17 C-15 F-12 G-19
USAEWES	4A161102AT22/C0/003		H-10A
ARRADCOM	АН19-F	17.8.6	B-16
ARRADCOM	АН19		A-14 B-15 C-14 D-17 E-10 F-11 G-17
ARRADCOM			B-16 G-18

TITLE/DESCRIPTION

DRIVER'S THERMAL VIEWER

Provide thermal driving capability for combat vehicles which will permit driving in fog, smoke, dust, and other dirty battlefield conditions.

DROPABLE CRT

Develop ruggedized CRT.

DYNAMIC MUZZLE SENSING

Provide a means of detecting and compensating for motion of the gun muzzle in a dynamic environment to tube flexure thereby coupling the gun muzzle to the LOS for optimal fire initiation.

DYNAMIC SIGNATURES OF TARGET SURROUND FEATURES IN REALISTIC WORLD ENVIRONMENTS

Develop more realistic mathematical relations that simulate dynamic thermal signatures fo natural features. These signatures are needed to provide a rational and realistic design data base for advanced surveillance and terminal homing equipment. Emphasis is on deterministic, multi-dimensional modeling capabilities that are valid for the spectrum of terrain/weather and surface materials experienced worldwide.

EFFECTIVENESS ASSESSMENT

Countermeasures to electro-optical imagers are a potential near term threat. Conceptual measures to counter this threat have been generated. To determine the battlefield value of these measures, an assessment must be made of their effectiveness. This assessment is the prime objective of this task.

ELECTROMAGNETIC TARGET SURROUND CHARACTERISTICS IN NATURAL TERRAINS

Provide designers, developers, and evaluators of target acquisition and surveillance systems that exploit visible (V), infrared (IR), microwave (MW), and millimeter wave (MMW) electromagnetic energy with a coherent body of information that permits systematic and quantitative consideration of ambient background (surround) conditions and responses of worldwide environments to these energy types.

ELEVATED TARGET ACQUISITION SENSOR SYSTEM (ETAS)

Develop mobile elevated day/night surveillance and target acquisition/positioning system for artillery battalion observation post.

EVALUATION OF FALSE ALARM MECHANICSMS AND SOURCES FOR MINE/MINEFIELD LOCATION

Improve mine/terrain background classification algorithms through better accommodation of false alarm sources and mechanisms. The classification algorithms employed will be those found most effective for background suppression and algorithms selected by the developer as candidates for implementation in standoff wine detection systems.

COMMAND	PROJECT NO.	DARCOM FLAN PARA NO.	ACV S&T PLAN PG NO.
ARRADCOM	63710ADK8704	15.9.1	A-14 B-15 C-14 D-17 E-10 F-11 G-17
CECOM			н-10А
ARRADCOM	AH19		A-14 B-15 C-14 D-17 E-10 F-11 G-17
USAEWES	4A161102AT22/C0/005		n-10y
ERADCOM	1E263710NK7C-U5		н-9
USAEWES	4A762730AT4?/BE3/002		H-10A
ERADCOM	63710ADK3701	11.11.6	D-16
USAEWES	4A762719AT40/B0/049		H-10A

TITLE/DESCRIPTION

FIBER OPTIC TRANSMISSION SYSTEM (LOCAL DISTRIBUTION)

Replacement of CX-4566 (26 pair) cable with an optical cable system.

FIBER OPTIC TRANSMISSION SYSTEM (LONG HAUL)

The FOTS(LH) will be compatible and interoperable work with existing tactical digital communications equipment interconnected by CX-11230 twin metallic coaxial cable. This includes ATACS equipment, improved ATACS equipment and selected TRI-TAC equipment. FOTS(LH) will be capable of operating over optical cable path lengths of from 300 meters to 6 kilometers without repeaters and up to 64 kilometers using no more than 10 repeaters.

FLAT PANEL EL DISPLAYS

To develop reliable, rugged, lightweight, compact, solid state displays, capable of displaying full video graphics legibly in light levels from total darkness to direct sunlight. Design goals include standard module configuration, built-in operator interactive touch panel and compatibility with Military Computer Family (MCF).

1MPROVED NON-STANDARD CONDITION SENSOR

To develop, fabricate, and evaluate sensors for the measurement of non-standard conditions associated with engagement as air temperature, air density, grain temperature, and tube wear. This sensor will eliminate the need for manual input of such data into the fire control ballistics solution.

INTEGRATED PROCESSING SYSTEM

Provide computational capacity required for auto track, maneuvering target prediction, auto-cue, digital control and stabilization, ballistics within volume constraints of combat vehicle.

INTEGRATED SENSOR ASSEMBLY

Develop technology demonstrator using staring focal planes in stabilized systems for light vehicle application,

LIGHT ARMORED VEHICLE EVALUATOR

Provide low cost night vision systems capability for light armored vehicles in support of the Rapid Deployment Force.

LOW POWER LASER PULSERS

Develop compact, long life power conditioners for Mi Rangefinder, X-Wind Sensor (CO₂ laser). Develop high rep rate pulser for Laser Radar.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
CECOM	1X463707D246-09-48		н-9
CECOM	1x464701D487 3 5		н-9
ERADCOM	1L162705AH9403 1L263742DF3201		A-13 B-13 C-13 D-16 E-8 F-10 G-16
ARPADCOM	AH91		A-13 B-13 C-13 D-16 E-8 F-10 G-16
ARRADCOM			B-17 C-15
ERADCOM	63710ADK7002		E-10
ERADCOM	63710ADK7002		E-10 F-12
ERADCOM	1L162705 AH94 11-03		B-18A

TITLE/DESCRIPTION

PE FOCAL PLANE ARRAY FABRICATION TECHNIQUES

Develop a high yield producible process for PV and HgCdTe focal plane array fabrication,

MARK III NIGHT SIGHT

Provide automatic cueing and second generation FLIR in Ml Tank and upgrading gunner's performance in target acquisition and positioning.

I MISS DISTANCE SENSOR

To provide a system capable of determining and automatically correcting for projectile/target miss distance.

ILITARY COMPUTER FAMILY FRODUCT LINE PERIPHERALS

Develop MCF interfaces for product line peripherals (Datametrics 1500 Printer, SAI Technology Plasmascope, an auxiliary memory, and a secondary memory)

ILLIMETER WAVE PHASED ARRAY AND CONFORMAL ANTENNAS

Develop single frequency low cost electronic beam steering arrays.

INEFIELD DETECTION UTILIZING RECONNAISSANCE ASSETS

Determine the performance characteristics of existing reconnaissance sensors in a minefield detection role and as a function of climate, vegetation, and target deployment. Estimated performance of those sensors on alternate platforms.

INI EYESAFE LASER INFRARED OBSERVATION ACT (AN/PVS-6)

Provide low cost, lightweight, eyesafe laser rangefinder for the infantry to 3km,

INI LASER INFRARED OBSERVATION SET

Provide low cost, two-pound rangefinder for forward observers to 4 KM.

IODULAR SENSOR ASSEMBLY

Develop set of standard components to be used in building sensors with integral sensing, stabilizing and processing for day/night applications. The use of standard components will allow for significant cost reduction due to longer production runs and competition from second sources.

TULPLI LINE UV-FIB TUNABLE LASERS

Demonstrate technical feasibility of advanced frequency agile CO2 lasers and continuously tunable visible NIR lasers.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	6.37.10 DK70-02		H-10A
ERADCOM	63710ADK8701		B-16 G-18
ARRADCOM	AH19-F		G-19
CECOM	1x463723D186,02		н-9
ERADCOM	1L162705AH9497	14.7.1	H-10A
ERADCOM	D608~26		н-10
ERADCOM	63710 DK70-28		н-9
ERADCOM	63710DK70		C-15
ERADCOM	63710DK7017		E-10
ERADCOM	DH95MO	•	A-12 B-14 C-12 D-18 E-9 F-12 G-17

TITLE/DESCRIPTION

MULTI SENSOR SIGNAL PROCESSORS

Develop common (multi-sensor) signal processor for IR/MMW inputs.

MULTI-ENVIRONMENTAL ACTIVE RF SEEKER TEST BED

Develop, test, and evaluate an RF Seeker capable of tracking both stationary and moving targets in clutter.

MULTI-FUNCTION LASER MODULES TARGET ACQ AND ENG

Provide a variety of state-of-the-art carbon dioxide laser devices capable of satisfying a wide variety of operational needs including rangefinding, range rate sensing, crosswind sensing, target acquisition remote chemical agent detection and others.

MULTI-PURPOSE DETECTION SYSTEM

Develop and demonstrate new concepts for detecting mines and explosives in urban terrain where other approaches fail due to interference and obscuration.

MULTI-SENSOR AIR DEFENSE ACQUISITION

Combine an infrared search set with a track-while-scan radar and a passive RF Sensor for short range air defense target acquisition.

MULTI-SENSOR TARGET ACQUISITION SYSTEM (MTAS)

Develop Multi-Sensor target acquisition system for enhanced combat capability. The technical approach is to exploit mm wave radar combined with thermal imaging to provide all visibility surveillance/fire direction.

NANOSECOND PULSERS

Develop compact, long life power conditioners for MI tank rangefinder and X-wind sensor (CO2 laser).

NCBIFF LASERS

Explore candidates using active lasers of NCBIFF.

NIGHT VISION AUTO SENSOR DEVELOPMENT

Develop a brassboard of a multi-functional processor which can receive inputs from a number of sensors and through various processing modules provide automated functions for simultaneous tracking of targets and automatic recognition.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	DH95-DO		B-18 G-20
MICOM	RE-1		A-14 B-15 C-14 D-17 E-9 F-11 G-16
ERADCOM	рн95-ро		A-12 B-14 C-12 D-18 E-9 F-12 G-18
MERADCOM		6.6.4	H-10
MICOM	RNT-8	4.5.6	A-13 B-13 C-13 D-16 E-8 F-10 G-16
ERADCOM	DK70-31		B-18 G-20
eradcom	1L162705AH9401		B-16
ERADCOM	рн95	•	A-14 B-15
ERADCOM	EK70-13		A-12 B-14 C-12 D-18

TITLE/DESCRIPTION

PTICAL CORRELATOR TARGET CUEING (RNT-10)

Demonstrate target cueing and acquisition aided by an optical correlator as applied to missile systems with optical fiber data link.

ERIPHERALS HIGH TECHNOLOGY

Establish technical feasibility of promising new advanced technologies for application to computer peripherals.

ROCESSOR FOR COMMON MODULE FLIRS

Develop prototype digital processors for 1st generation common module to accomplish digital scan conversion (DSC) and automatic target recognition (ATR).

ROTOTYPE 10.6 MICRON CROSSWIND SENSOR

The technical objective is to develop a crosswind sensor capable of integration into a tank fire control system. The operational objective is to increase the probability of first round hits of the main gun by decreasing the meteorological wind error contribution to the error budget of tank gunners.

ROTOTYPE ROBOTIC SENSOR UNIT

Develop a remote controlled semi-autonomous sensor system for remote sensing/intelligence collection with assistance in targeting.

ULET RADAR FOR AIR DEFENSE

Develop a radar for short range AD having significantly enhanced survivability to ARMs and increased effectiveness in an ECM environment.

AM HARDENED CO2 LASER RANGEFINDER COMMON MODULES

Develop a second source advanced development model CO₂ Laser Rangefinder for the Ml Tank. This rangefinder will provide FLIR compatible and improved performance in smoke, haze and fog compared to existing rangefinder technology. Eye safe operation will also enhance training capability.

AM HARDENING OF RANGING ELECTRONICS

Productize critical common module components for carbon dioxide laser rangefinders which will provide eye safe, FLIR compatible performance in smoke, fog, haze, etc.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
MICOM	RNT-10		H-10
CECOM	1L162701A094Q0		н-9
ERADCOM	DK7013	11.6.1	A-12 B-14 C-12 D-18 E-9 F-12 G-18
ERADCOM	AH71D0		B-17
ERADCOM	DK70-30	8.25.1	A-12 B-14 C-12 D-18
			E-9 F-12 G-18
MICOM	RE-12	4.4.1	A-14 B-15 C-14 D-17
			E-10 F-11 G-17
ERADCOM	DK70-26		B-19 C-15 F-13 G-19
			B-18 C-16 F-13 G-20
ERADCOM	DK70-26		H-10 C-10 F-13 G-20

TITLE/DESCRIPTION

REBTAM MODELING ACQUISITION EFFECTIVENESS AND ANALYSIS

Provide a reference document to the user community sensors. Volume II will include the dynamic effects of search and obscuration. Provide continuing modeling and analysis of system effectiveness in Battlefield Environment of future Army EO/IR/MMW sensor.

SCATTERMINE DETECTION

Demonstrate the feasibility of detecting air delivered minefields by modification of a sensor system developed for other purposes.

SECOND GENERATION FOCAL PLANE - ADVANCED FLIR TECHNOLOGY (AFT)

To advance the state-of-the-art of scanned 8-12 micron infrared focal plane technology aimed at increasing thermal sensitivity, thus increasing range performance of thermal imaging sights in both good and degraded weather conditions.

SENSOR FIELD EVALUATION

Evaluate EO/IR/MMW sensor performance and validate models under realistic battlefield conditions for modeling and analysis.

SMART SENSOR MODELS

Generate E-O sensor, MMW radar, and smart sensor models for future design optimization and conclusion in battlefield simulation and analysis.

SS 94 GHz TRANSMITTER/RECEIVER MODULE

Provide low cost transciever modules for pulsed, FMCW or FSK radars at 35-100 GHz.

STABILIZATION TECHNIQUES

Develop stabilization techniques to reduce cost of platforms for FLIRs, lasers and mm radar, and to improve weapon system accuracy.

TARGET BACKGROUND SIGNATURES AND ENVIRONMENTS

Develop target signature characteristics for guidance systems, evaluate sensors and guidance systems in smoke, dust, and adverse weather.

TERRAIN EFFECTS OF VISIBILITY AND LINE-OF-SIGHT WEAPONS

Simulate visibility and line-of-sight weapons opportunity for engagement under the constraints of environmental conditions.

COMMAND ERADCOM	PROJECT NO. 1L162709DH95/SO	DARCOM PLAN PARA NO.	ACV S&T FLAN PG NO. H-10
MERADCOM		6.6.3	н-9
ERADCOM	6.27.09, DK95/A0		B-16 C-15 E-10 F-13 G-20
ERADCOM	1L162709DH95		H- 9
ERADCOM	62709рн9550	11.9.3.	н-10
ERADCOM	1L162705.AH94.07	14.6.1	H-10A
ERADCOM	DK76-02		B-19 C-16 F-13 G-20
MICOM	RE12		A-13 B-13 C-13 D-16 E-8 W-10 G-16
USAEWES	4A762730AT42/BE3/003		H-20A

TITLE/DESCRIPTION

TERRAIN SIGNATURE CHARACTERIZATION FOR MINE/MINEFIELD DETECTION

Develop background signature data bases formatted specifically for efficient use in the design and evaluation of concepts and hardware for mine/minefield detection.

THERMAL WEAPON SIGHT

Provide family of lightweight, manportable weapon and surveillance FLIRS with modular design using advanced cooling and second generation focal plane arrays.

TUNABLE FILTERS, OPTICAL SWITCHES

Develop techniques to acquire and/or negate performance of enemy targets.

VEHICLE DYNAMICS SENSOR

To provide low cost sensors which will provide information on on-vehicle dynamics to the FC processor. Where appropriate, compensation will involve sensor definition, placement, and development of compensation techniques.

WIDE AREA NEUTRALIZATION DEVICE (WAND)

Provide acoustic, seismic, magnetic, etc., signatures of combat vehicles that will defeat remote mines equipped with sophisticated sensors.

XM22 AUTOMATIC CHEMICAL AGENT ALARM (ACADA)

To develop a new generation alarm with a multi-agent capability. The alarm will be used for area warning to warn personnel to mask, to monitor inside collective protected shelters, vans, and vehicles, and to warn of contaminated surfaces using the principle of Ion Mobility Spectrometry.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
USAEWES	4A76219AT40/BO/039		H-10A
		•	
ERADCOM	DK7017	15.8.1	A-12 B-14 C-12 D-18
			E -8 F-11 G-17
ERADCOM	DH95~P0		B-18 C-16 F-13 G-20
ERADOON	B1175 T 0		
ARRADCOM	AH91		A-14 B-15 C-14 D-17
			E -9 F-10 G-16
MERADCOM		6.5.1	B-19 C-15 G-19
ARRADOON	1U463721D601-06		A-14 B-19 C-16 D-16
			E -8 F-13 G-20

TITLE/DESCRIPTION

ADVANCED MAIN-TANK INTEGRATION STUDIES

Apply state-of-the-art display technology and research to a prototype tank command control and display. Review state-of-the-art vehicle navigation systems and display technology and develop prototype hardware. Fabricate, install, and test a prototype-enhanced response system.

ADVANCED PROGNOSTICS

To establish a technology base for prognostics in order to: identify failing systems, reduce extent of failure, provide Unit Commander knowledge of his vehicle condition, increase vehicle availability and provide ATEPS with prognostic capability. The 6.3 activity will provide advanced development or prognostic algorithms with applications in brass board hardware for demonstration and verification.

COMBAT DAMAGE PREDICTION, DIAG, AND EXPED REPAIR

Develop methodologies for prediction of battle damage, and manpower and material requirements for evacuation and repair. Develop methodologies for determining actual battle damage by the field soldier. Develop and document methodologies for expedient repair of battle damage.

COMBAT REFUELING

Provide system(s) for rapid refueling of combat vehicles. Reducing travel time to and from supply points will increase available combat time.

ESTABLISH STRESS LEVELS ON CREWS

Quantitatively measure combat vehicle crew stress levels and performance decrements during extended continuous operations. Measure the performance of combat vehicle crew for four (4) men vs. three (3) man crew (assuming auto-loader application).

FORWARD AMMUNITION SUPPLY AND TRANSFER

Improvement of the ammunition supply procedures and material handling equipment. Conduct a study and review the problems associated with the retail delivery of ammunition.

INFORMATION REQUIREMENTS FOR COMMAND & CONTROL

Apply state-of-the-art display technology and research to a prototype tank command and control display. Phase I, using the German Interactive Simulator (APKA) to conduct a force on force evaluation of providing tank platoon leaders with graphic displays of terrain and selected intelligence data, will be conducted in Germany during Nov 82.

ACV S&T PLAN PG NO. DARCOM PLAN PARA NO. PROJECT NO. COMMAND A-15 B-20 C-17 D-19 USAHEL E-11 F-14 G-21 B-20 C-17 F-14 2.4.10 TACOM H-11 ACN46495 USA LOG CEN A-15 B-20 C-17 D-19 MERADCOM E-11 F-14 G-21 H-11 HEL H-11 1L162716AH70 HEL A-15 B-20 C-17 HEL

TITLE/DESCRIPTION

MATERIAL HANDLING EQUIPMENT & SUPPLY DIST

Develop the technology base required to support trade-off analysis of integrating ammo handling equipment- even robotics-into the Forward Ammo Resupply System. This ammo handling equipment will enhance effectiveness in the harsh battlefield environment of NBC, smoke, and light because ammo will be transferred with personnel remaining under armor.

MICROCLIMATE CONDITIONING SYSTEM (MCS)

To provide cooling for the combat vehicle crewman by means of a vest worn between his underwear and his outer garments. A coolant (either liquid or air) is pumped through the vest via a closed-circuit system providing cooling to the torso. Inclusion of a skull cap to be worn under the helmet is also being considered.

NATO COOPERATIVE ACTIVITIES

Achieve standardization and interoperability with NATO allies throughout the materiel system development process. Develop equipment standardization agreements, conduct cooperative research program, initiate cooperative logistics programs and initiate codevelopment/coproduction programs.

NBC DECONTAMINATION

Develop equipment for decontamination of both the interior and exterior of combat vehicles. Equipment is based on a systems approach to also protect personnel during the decontamination process. It permits reclaiming NBC contaminated vehicles to permit their recommitment to the battle or operational status.

NBC EFFECTS ON A COMBAT ASL/PLL

To develop methodology and techniques wherein the impact of an NBC environment on vehicle hardware can be determined. This information could then be used to update Combat ASL/PLL methodology which currently concerns itself with damages incurred in conventional warfare. The overall objective of this program is to insure that optimum Combat ASL/PLL's are developed which reflects expected combat environments.

NBC RECON SYSTEM

To provide an NBC system to include vehicle to conduct detailed ground NBC recon within, to the front, flanks, and to the rear of the Div (Div Cav), Corps (ACR) and Echelons above Corps (EAC) on a mission basis; conduct lines of communication (LOC) NBC surveillance and assist troop movement within and through the Div/Corps/EAC AO; conduct internal NBC surveillance to facilitate rear area combat operations (RACO); position and monitor remote sensors in support of Div/Corps/CAC Surveillance plans; collect agent sample for analysis.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
MERADCOM	A2H2OSC0631		A-15 B-20 C-17 D-19 E-11 F-14 G-21
TACOM			A-15 B-20 C-17 D-19 E-11 F-14 G-21
TACOM			н~11
TACOM			A-15 B-20 C-17 D-19 E-11 F-14 G-21
AMSAA			H-11
ARRADCOM (CSL)			C-17 D-19 E-11 F-14

TITLE/DESCRIPTION

POWER TRANSMISSION FLUIDS

Select corrosion inhibited power transmission fluid for turbine engine/transmission system. Longer more reliable turbine engine operation. Engine and related testing to screen candidate formulation. The best will proceed to operational engine tests.

RAM-D COMPONENTS

Develop a methodology for realistically selecting RAM-D goals of combat and other vehicles. Develop a method of selling a minimum threshold RAM-D values that must be exceeded before the combat vehicle adds rather than subtracts from combat effectiveness. Develop a combat effectiveness vs. RAM-D level relationship using operation research disciplines so that the impact of early design changes can be effectively justified using battlefield effective measures. Apply methodologies developed to product improvement programs.

RAM-D PREDICTION METHODOLOGY

To develop new methodologies for predicting the RAM-D of components and combat vehicle systems prior to initiation of development and during the development program. The overall objective is to insure that RAM-D parameters are apportioned down to the lowest practical subsystem so that proper management can be given to insure that levels of RAM-D are achieved that are both cost effective and attuned to required combat capabilities.

REPAIRABILITY TECHNOLOGY

To establish a methodology and approach for achieving the capability for rapid repair of tanks and related support vehicles when engaged in combat operations. The methodology is intended to lead to identification of most frequent repair actions and concepts established for the design of components that can be quickly repaired by the crew or operators at the organization level.

MERADCOM

MERADCOM

AMSAA

MASAA

DARCOM PLAN PARA NO.

ACV S5T PLAN PG NO.

B-20

H-11

H-11

SURVIVABILITY

TITLE/DESCRIPTION

ADIABATIC DEFORMATION AND BALLISTIC PENETRATION OF ARMOR PLATE

Define metallurgical parameter relationships to ballistic resistance of armor materials (steels) by plugging-adiabatic shear and thereby provide guidelines for armor improvement.

ADVANCED ARMOR MATERIAL APPLICATION

Evaluation of new armor materials and/or systems for combat vehicle applications.

ADVANCED COUNTERMEASURES/VEHICLE INTEGRATION DEFENSE SYSTEM

Advanced development of acoustically and optically based systems for the detection of battlefield threats to combat vehicles and the selective integration of threat detection/warning location and identification display and countermeasures hardware into combat vehicle self-protection systems.

ADVANCED MATERIAL SYSTEMS FOR ARMY APPLICATIONS

Develop advanced material systems applicable to armored combat vehicle to defeat multi-threat mix.

ANTI-LASER PAINT

Develop anti-laser tunable camouflage paints that will effectively absorb low energy laser radiation with wavelengths below 3.0 microns. This will render ineffective lasers used to aid weapon systems (examples include laser target designators, rangefinders, and lasers).

ARMOR APPLICATIONS OF TEXTURED MATERIAL

Develop specially processed textured steels and other materials (aluminums, titaniums) for improved ballistic/mechanical properties.

ARMOR DEVELOPMENT AND DEMO PROGRAM

To enable prototype demonstration and scaled-up of advanced armor techniques through full scale test or adaption to test beds. Program will identify future areas of interest for rapid development, scale-up and demonstration.

ARMORED VEHICLE SYSTEMS MODEL

Develop mathematical models for comparing relative effect of mobility, firepower, and armor protection of combat vehicles. Develop mathematical/computer models of ballistic phenomena to predict interior, exterior, and terminal performance of fighting vehicles armaments. Conduct systems studies using these models.

Control of the property of the second of the

SURVIVABILITY

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
AMMRC	1L162105AH84		H-12
TACOM	1L162601AH91		H-14
TACOM	1L263631D014		A-16 B-21 C-18 D-20 E-12 F-15 G-22
<u>AMM</u> RC			n-13
MERADCOM	1L161102AH51C		н~15
AMMRC	1L162105AH84		H-13
TACOM	1L63636D221		A-17 B-22 C-19 D-21 E-13 F-16 G-23
ARRADCOM (BRL)	1L162618AH80		H-17

SURVIVABILITY

TITLE/DESCRIPTION

AUTOMATIC TARGET RECOGNIZER DIGITAL IMAGERY DATA BASE

Develop target and background signature image processing techniques for smart sensors and automated weapons systems and weapons effectiveness studies. Measure and characterize significant features of targets in EO/IR/MMW spectral bands for smart sensor seeker performance assessment and target acquisition modelling. Maintain data base for resulting signatures.

CHEMICAL AND BIOLOGICAL DECONTAMINATION AND CONTAMINATION AVOIDANCE

Evolve materials and equipment for use in the decontamination of personnel, personnel items, and TO&E equipment by all armed services. Included are studies to allow for ease and speed of decontamination to the optimal degree practicable. Also investigate procedures designs and materials which preclude chemical, biological, and radiological contamination. Included are studies on the basic properties of contaminants which support the development of methods of avoiding or minimizing contamination.

CHEMICAL DETECTION AND IDENTIFICATION TECHNOLOGY-NBC RECONNAISSANCE SYSTEM

Develop an NBC Reconnaissance System capable of locating and identifying contaminated areas.

CHEMICAL WARFARE AGENT-RESISTANT MATERIAL FOR COMBAT VEHICLES

Development of organic polymers with improved resistance to CW agents and decontaminants.

CHEMICAL-BIOLOGICAL THREAT ASSESSMENT TECHNOLOGY

Monitor intelligence information and available assessment technology, quantify threat to best degree possible.

COLLECTIVE PROTECTION MATERIAL

Develop Hybrid Collective Protection Equipment (HCPE) and address other related NBC defensive/survival considerations pursuant to PL 95-79 so as to afford improved defendability of combat vehicle crews to an NBC warfare threat.

COMBAT VEHICLE ENVIRONMENTAL SUPPORT SYSTEMS

Develop Environmental Support Systems (ESS) common to a number of ground combat vehicles which may be used in connection with collective protection. Allow vehicle to operate "buttoned-up".

COMBAT VEHICLE ROBOTICS

Establish a robotics program plan which defines the role of robotics/artificial intelligence in future combat vehicle development, and to implement programs which address survivability aspects of Air/Land Battle 2000.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ERADCOM	1L162709 DH95/50		н-15
ARRADCOM	1L162706A553		H-16
ARRADCOM (CSL)	1L162706A353		н-16
AMMRC			H-14
ARRADCOM (CSL)	1L162706A553A0		н-16
TACOM	1M463721DJ30		A-16 B-21 C-18 D-20 E-12 F-15 G-22
MERADCOM	1L463726DK39		A-16 B-21 C-18 D-20
			E-12 F-15 G-22
TACOM			B-22 G-24

TITLE/DESCRIPTION

COMPARTMENTING

Development of combat vehicle ammunition compartment design criteria and prototype hardware which will reduce catastrophic vehicle kills caused by detonation of on-board ammunition.

DECOYS

Conduct an analysis of the use of the force multiplier potential of using decoys in European combat scenario.

DEFORMATION STRENGTHENING OF ALUMINUM ARMOR

Control deformation strengthening mechanisms in a superior experimental alloy.

DEVELOPMENT AND TESTING OF LASER HARDENED MATERIALS AGAINST PULSED THREATS

Develop advanced transparent materials/composites to optimally defeat HEL threats.

DEVELOPMENT OF ARMOR PLATE WITH IMPROVED SHATTERING RESISTANCE

Improved shattering resistance of steel armor under ballistic attack by metallurgical and processing procedures.

DEVELOPMENT OF BALLISTIC DATA FOR ARMOR MATERIALS

Generate, correlate, catalog and disseminate ballistic data in the form of a "Ballistic Handbook" for metallic, ceramic, and polymeric armor materials.

DEVELOPMENT OF HIGH STRENGTH HOMOGENEOUS ALUMINUM ALLOY

Improve mechanical properties, ballistic resistance, weldability, and stress corrosion of high strength aluminum alloy via alloying elements, thermal-mechanical and quenching treatments.

DEVELOPMENT OF LIGHTWEIGHT PERSONNEL ARMOR MATERIALS TO DEFEAT ADVANCED THREATS

Develop lightweight materials systems for personnel armor applications (vests/helmets) to optimally defeat advanced threats.

DEVELOPMENT OF SPALL SUPPRESSION LINERS

Develop advanced lightweight armor materials systems possessing effective spall suppression and resistance to fragment penetration in configurations applicable within tank hull/turrets.

DEVELOPMENT OF ULTRA HI-STRENGTH STEEL PROCESSING

Develop high strength higher toughness steel armor material with low critical elements such as Ni and Cr.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	1L162601AH91		н-14
MERADCOM	1L162733AH20		н-15
AMMRC			H-12
AMMRC	1L162105AH84		H-17
AMMRC	1L162105AH84		н-13
AMMRC	1L162105AH84		н-15
ARRADCOM			н-12
AMMRC	1L162105AH84		н-16
AMMRC	1L162105AH84		н-14
AMMRC	1L162105AH84		н-13

TITLE/DESCRIPTION

DIRECT ENERGY BEAM REDUCTION

Assess threats from directed energy beam weapons and determine techniques/materials which can potentially absorb/reflect/diffuse the beams.

EFFECT OF IMPURITY ELEMENTS IN DEFORMATION STRENGTHENING OF ALUMINUM ARMOR

To understand the effects of alloy chemistry on strengthening mechanisms and stress corrosion of aluminum alloys.

EO/LASER COUNTERMEASURE TECHNIQUES

(Project description is classified CONFIDENTIAL.)

FACE MASK, COMBAT VEHICLE CREWMAN'S

Develop a face mask that will provide combat vehicle crewman protection against flame, dust, wind, and low velocity fragments.

FAILURE CRITERIA IN PENETRATION MECHANICS

Guide development of advanced armor materials systems through stress/strain failure analysis and understanding of complex penetration mechanisms.

FIRE SURVEVABILITY TECHNOLOGY

Execute and integrate all near-, mid-, and long-term DARCOM programs that significantly reduce the catastrophic loss of vehicles from fires.

FUELS & LUBRICANTS: FIRE-RESISTANT FUELS

To develop a fire-resistant fuel (FRF) for use in armored vehicles while operating in hostile environments. The use of this fuel will greatly reduce pool-burning associated with combat damage. Its use will significantly reduce the vulnerability hazards associated with fire threat problem. The FRF is intended to be used only during periods of combat/hostile actions.

FUELS AND LUBRICANTS: FIRE-RESISTANT HYDRAULIC FLUID

To develop a non-flammable hydraulic fluid to be used in armored combat vehicles. The adaption of this fluid in conjunction with the Fire-Resistant Fuel will greatly enhance the overall survivability of armored combat vehicles.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV SAT PLAN PG NO.
TACOM	1L162601AH91		A-17 B-22 C-19 D-21 E-13 F-16 G-23
AMMRC			H-12
ERADCOM	1L762715 A042		н-15
NLABS	2G464713 DL40-96		A-18 B-23 C-20 D-21 E-13 F-16 G-23
AMMRC	1L162105AH84		н-15
TACOM	1L162601AH91	2,6.4.	н-12
MERADCOM	1L263104D150		H-14
MERADCOM	1L263104D150	21.6.14	H-14

TITLE/DESCRIPTION

HELMET, COMPATIBLE, COMMUNICATION/AURAL PROTECTIVE SYSTEM

Develop a small, lightweight, low-cost standard combat helmet compatible, detachable communications and/or aural protective system of headsets for the individual soldier for mounted/dismounted operations.

INTEGRATED COUNTERMEASURES TEST BED

Test bed will integrate and evaluate nonarmor solutions to vehicle defensive problems. One aspect of this approach is passive countermeasures to terminally homing munitions and threat acquisition devices.

INTEGRATED CVC CLOTHING SYSTEM

Incorporate chemical protection into the existing CVC uniform.

INTERFACE NAVY SHIP STRUCTURAL PROTECTION PROG

A materials and data base development program directed at defeat of large mass fragments for both conventional munition, burst velocities and hypervelocities.

KE PENETRATOR TECHNOLOGY/PENETRATION MECHANICS

Improve state-of-the-art in penetration mechanics. Establish and maintain a KE penetrator capability to defeat future armor threats.

LIGHTWEIGHT COMBAT VEHICLE COMPOSITE COMPONENTS

Develop composite constructions and manufacturing processes applicable for both armor and structure for vehicle components including hull construction. Reduced weight and/or improved ballistic performance and cost reduction are desired.

LIGHTWEIGHT PROTECTIVE ARMOR FOR CONTAINERS

Develop optimal lightweight materials systems incorporating state-of-the-art technology to defeat 7.62mm AP projectiles. These systems will also be tested/evaluated versus a mix of threats including fragments, Ball and AP projectiles. Optimal systems emerging from this investigation will have applicability for future lightweight combat/logistics vehicles.

LOW VULNERABILITY PROPELLING CHARGE (LOVA)/REDUCED VULNERABILITY TANK GUN PROPELLING CHARGES
Improve processing technology for extrusion of multi-perforated grains of low vulnerability
propellant. Produce propellant for test firing in M68 gun. Improve binder energetics and investigate
production of ultrafine HMX and RDX particles.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
NLABS	2G464713 DL40-20		C-20 D-22
TACOM		2.8.3	B-22 C-19 G-24
NLABS	1G263747D669-9Y		A-18 B-23 C-20 D-22
			E-14 F-16 G-23
AMMRC			H-12
ARRADCOM (BRL)	1L162618AH80	21.6.1	B-23 C-20 E-14 F-16 G-24
,,			
AMMRC	1L162105AH84		н-16
AMMRC	A99QAXFB		н-16
	•		
ARRADCOM	1L162618AH80	19.6.4	н-16
(BRL)			

TITLE/DESCRIPTION

MATERIALS/STRUCTURES SCALE-UP DEMONSTRATION

To demonstrate the feasibility of composite armor construction for the turret of M2/M3 vehicles.

MICROCLIMATE CONDITIONING SYSTEM

Regulate body temperature of crewmen by means of a microclimate conditioning system.

MULTI-THREAT COMPOSITE ARMOR SYSTEMS

Develop lightweight composite armor systems for integrated threat protection.

MULTIFUNCTIONAL ARMOR SYSTEM FOR DEFEAT OF TOP ATTACK

Develop lightweight armor materials systems incorporating conventional and state-of-the-art technology to maximize protection against overhead threats (M42 HEAT and GAV-8 KE penetrator for combat ground vehicles.

NBC COLLECTIVE PROTECTION MATERIAL

Apply NBC hybrid/ventilated facepiece protective equipment to user identified combat vehicles/weapon systems under development for improved tactical and operational capabilities, primarily against chemical threats on the integrated on-land battlefield.

NBC PROTECTION FOR COMBAT VEHICLES

Identify chemical, biological and radioactive particulate vulnerabilities of combat vehicles. Develop hybrid collective protection equipment.

NBC TECHNOLOGY

Develop and evaluate advanced NBC protective equipment and materials for vehicle and crew protection.

NOVEL MATERIAL SYSTEMS FOR ARMY APPLICATIONS

Develop exploratory and advanced novel materials systems for applicability to armored combat vehicles.

PASSIVE COUNTERMEASURES

Develop concepts for minimizing acoustic, photometric, infrared, laser and radar signatures of current and future combat vehicles.

REACTIVE AND ADVANCED PASSIVE ARMOR

To develop weight efficient armors for new AFV's and potential retrofit, PI on battle appliques for existing AFVs and to defeat KE and CE threats.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
AMMRC	1L16310D071		н-13
NLABS	1G263747D669		A-16 B-21 C-18 D-20 E-12 F-15 G-22
AMMRC	1L162105AH84		H-12
AMMRC			н-17
TACOM	1M464735D023		H-14
ARRADCOM (CSL)	1m463721DJ30		н-14
m. 001	1L162601AH91	2.6.9	A-16 B-21 C-18 D-20
TACOM	1L102001AD91	2.0.,	E-12 F-15 G-22
AMMRC	1L162105AH84		H~13
TACOM			A-17 B-22 C-19 D-21
			E-13 F-15 G-22
ARRADCOM	1L162618AH80	18.6.1.	H-13

TITLE/DESCRIPTION

REDUCED COST OF ADVANCED MATERIAL

Low cost high performance ceramics are needed in large quantities. This program will be simed at cost reduction of ceramics. Currently employed ceramic armor materials are processed by hot pressing, an expensive batch process where sizes are limited by availability of high temperature die materials. Processing of ceramic armor materials by several different sintering techniques will be explored in this program. Sintering techniques are more amenable to mass production and lower costs because large continuous tunnel kilns can be used, and product sizes can be larger because of greater flexibility in tooling. Another part of this program will be the development of techniques to make low cost starting powders to further lower costs of ceramic armor materials.

SECURE LIGHTING

Develop secure lighting systems for all current and future combat vehicles through changes in component design and application of suppression techniques.

SIGNATURE SUPPRESSION

Formulate and prepare a computer routine for generating infrared and thermal signature models of armored vehicles suitable for interface with existing weapon performance models.

STANDARDIZED FIRE SUPPRESSION COMPONENTRY

To reduce the major cause of severe damage and casualties in combat vehicles by detecting and suppressing explosive fires within vehicles.

STINGRAY, COMBAT VEHICLE SELF PROTECTION (CVSP)

(Project description is classified CONFIDENTIAL.)

TACTICAL REFLECTED AND EMITTED ENERGY SUPPRESSION SYSTEM (TREESS) CAMOUFLAGE RESEARCH

Develop a multi-spectral, modular camouflage system capable of preventing detection/location/recognition of ground-based tactical equipments, including armored vehicles, by visual, thermal, and radar (millimeter and centimeter) sensors. Prototype components employ thin multi-layer, multi-spectral films configured as screens or artificial foliage.

TANK TEST BED

Explore mid-term (1988-1992) options for advanced vehicle designs which significantly increase tank survivability and operational characteristics through innovative integration of the current technology and component base.

COMMAND AMMRC	PROJECT NO. 1T16302D071	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO. H-16
TACOM	1L162601AH91		A-17 B-22 C-19 D-21 E-13 F-15 G-22
TACOM	1L161102AF22		H-12
TACOM	1L162601AH91	2.6.5.	A-16 B-21 C-18 D-20 E-12 F-15 G-22
ERADCOM	6.37.62DK16		A-17 B-22 C-19 D-21 E-13 F-16 G-23
MERADCOM	1L161102AH51C		н-15
•			•
TACOM	1L26302D118	2.8.1	B-23 G-24

TITLE/DESCRIPTION

TECHNOLOGY BASE EFFORTS IN INFRARED SCREENING

Evolve new principles and concepts for smoke/obscurant agents, dissemination devices and delivery means to counter anticipated threats in the visual through far-IR spectral regions.

TECHNOLOGY BASE EFFORTS ON MULTI-SPECTRAL SCREENING

Evolve new principles and concepts for multi-spectral screening agents, dissemination devices and delivery means to counter anticipated threats.

TERMINALLY GUIDED SUBMUNITIONS/OVERHEAD ARMOR

Establish optimum design matrix for armor system(s) with the capability to defeat modern, terminally guided, anti-armor, overhead submunitions at minimum weight.

TRANSPARENT POLYURETHANE ELASTOMERS

Develop appropriate transparent polyurethanes that possess resistance to BC agent penetration.

VEHICLE EFFECTIVENESS TECHNOLOGY

Development of computer aided design (CAD) software incorporating existing survivability, vulnerability, and vehicle performance submodels into an overall vehicle effectiveness model.

VEHICLE HARDENING (ARMOR AND COMPONENTS)

Mathematical computer software which supports design of vehicle structure and components to survive non-penetrating hits.

VEHICLE HARDENING (TRACK & SUSPENSION)

Exploit the composite material technology to design tank roadwheels and track concepts using energy absorbing materials that absorb or deflect mine blast.

VEHICLE IMAGE CONTROL

Replicate false vehicle signatures through cue feature generation, false target source emission, and spacial, spectral and target intensity modifiers.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
PM SMOKE	1L161102A71A	7.11.1	A-18 B-23 C-20 D-21 E-13 F-16 G-23
PM SMOKE	1L161102A71R	7.11.2	A-18 B-23 C-20 D-22 E-14 F-16 G-23
TACOM	1L162601AH91		н-17
AMMRC	1L162105AH84		н-16
TACOM	1L162601AH91		H-12
TACOM			н-13
TACOM	1L263631D424	2.6.3	A-16 B-21 C-18 D-20 E-12 F-15 G-22
TACOM			н-13

The second secon

TITLE / DESCRIPTION

VEHICLE RADIATION SHIELDING

Develop and apply the capability to calculate the radiation shielding protection to personnel and electronic systems inside armored vehicles. Determine the military value of adding selective radiation shielding to armored vehicles for personnel protection from initial nuclear radiation.

VULNERABILITY/VULNERABILITY REDUCTION

Develop witness plate methodology for characterizing behind-armor debris produced by the perforation of steel armor targets by kinetic energy penetrators and shaped charges.

XM22 AUTOMATIC CHEMICAL ALARM AGENT

Develop a new generation alarm with a multi agent capability. The alarm will be used for area warning to warn personnel to mask, to monitor inside collective protected shelters, vans, and vehicles, and to warn of contaminated surfaces using the principle of Ion Mobility spectrometry.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
ARRADCOM (BRL)	1L162120AH25		н-14
ARRADCOM (BRL)	1L162618AH80	2,6,6.	H-15
ARRADCOM	1U463721D601		A-17 B-22 C-19 D-21 E-13 F-16 G-23

TITLE/DESCRIPTION

ADVANCED DIAGNOSTICS (6.2)

To provide a technology base for vehicle diagnostic techniques and test equipment to provide the forward support mechanic with a simple and effective means of diagnosing vehicle malfunctions. The emphasis is on techniques and test equipment to enable a rapid and easy means to acquire diagnostic information to expand diagnostic capability.

ADVANCED DIAGNOSTICS (6.3)

Provide advanced development of diagnostic technology gained from the 6.2 program to demonstrate hardware application feasibility to the Simplified Test Requipment family in order to provide the forward support mechanic with simple and effective means of rapidly diagnosing malfunctions to: reduce diagnostic time, increase diagnostic capability, increase vehicle availability, reduce logistic support costs, and simplify training.

ADVANCED PROGNOSTICS (6.2)

To establish a technology base for prognostics in order to: identify failing systems, reduce extent of failure, provide Unit Commander knowledge of his vehicle condition, increase vehicle availability and provide vetronics with prognostic capability.

ADVANCED PROGNOSTICS (6.3)

Provide advanced development of prognostic algorithms with applications in brass board hardware for demonstration and verification. Hardware and software developed on the 6.2 program will be utilized. Output will be applied to the vetronics program.

ATEPS PROTOTYPE DEV (6.3)

Install and test ATEPS Hull Prototype Hardware in a baseline MI and develop ATEPS Turret Prototype Hardware. This project consists of removing existing MI Hull and Turret Hardware, finding optimum location of the ATEPS core elements, designing and fabricating interconnecting cables, designing, fabricating and installing the ATEPS Turret Hardware.

ATEPS TECHNOLOGY (6.2)

4. 30. 40. 40. 40. 41. 41. 41.

Initiate the development of a Fiber Optic Data Bus System and slip ring module to replace the current ATEPS twisted pair data bus and brush/ring contacts (slip ring) on a second generation basis. The fiber optic task encompasses conceptual designs for data transmission rates of 1 MHZ, 5 MHZ, and 10 MHZ. The 1 MHZ design will be fabricated. The fiber optic slip ring module will be multi-channel for redundancy and of a configuration to interface with the current MI hydraulic/pneumatic assembly.

COMMAND	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM	1L162601AH91	2.4.10	B-24 F-17 G-25
TACOM	1L263631D014		B-24 F-17 G-25
TACOM	1L162601AH91	2.4.10	B-24 F-17 G-25
TACOM	1L263631D014		B-24 F-17 G-25
TACOM	1L263631D014	2.4.8	B-24 F-17 G-25
TACOM	1L162601AH91	2.4.8	B-24 F-17 G-25

TITLE/DESCRIPTION

COMBAT CREW DISPLAY

Provide a multifunction interactive crew display and associated hardware that presents the following information: Vista Network Data, Navigation Data, Prioritized Threat Data generated by on-board vehicle sensor array, video from on-board FLIR and low light T.V., other vehicle info oriented toward 1986 new thrust demos.

VETRONICS (6.2)

Develop a system architecture and standards for more efficient integration of vehicle electrical/electronics systems and real time integration with the electronic battlefield. Further, to identify technological opportunities and technology transferrable from avionic for application to combat vehicles.

VETRONICS (6.3)

Provide vetronics technology hardware concepts to demonstrate more efficient integration of vehicle electrical/electronic systems and real time integration with the electronic battlefield. Provide for the following vetronics test beds: System architecture, crew display, and maintainability demonstrators.

COMMIN	PROJECT NO.	DARCOM PLAN PARA NO.	ACV S&T PLAN PG NO.
TACOM			A-19 B-24 F-17 G-25
TACOM	11.162601AH91		B-24 F-17 G-25
KOOAT	1L263631D014		B-24 F-17 G-25

M60 SERIES TANK

This combat vehicle is full-tracked and mounts a 105mm M68 gun in a fully traversable turret. The hull and turret are homogeneous-armor castings. The four-man crew consists of a commander, driver, gunner and loader. An AVDS-1790, air cooled, 12 cylinder, turbocharged, compression-ignition engine, rated at 750 HP, is coupled to a CD-850 transmission to provide vehicle power.

M60A1

The M60Al Tank is equipped with an AVDS-1790-2A, 2C or 2D engine and T97 or T142 Track. The fire control system includes an M13-series mechanical ballistic computer, an M17Al coincidence optical rangefinder and an M32-series gunner's periscope, employing either an active IR or passive image-intensifier night sight. Gun/turret stabilization is provided by an add-on electro-hydraulic kit.

The M60A3 Tank is equipped with an AVDS-1790-2C RISE engine and T!42 Track. The fire control system includes an AN/VVG-2 ruby laser rangefinder, an M21 electronic analog ballistic computer and an M35El gunner's periscope, employing a passive image-intensifier night sight. Gun/turret stabilization is provided by a system similar to that used in the M60Al which, in this case, interfaces with the ballistic computer.

M60A3TTS

The TTS improvement consists of an AN/VSG-2 Tank Thermal Sight (TTS). The TTS is a state-of-the-art integral day/ night periscope. Its night channel senses emitted radiation in the 8-12 micron spectral band. It provides a truly passive, long range full solution control capability.

: FY83:		FY85:	:	FY87:		: 'Y89:	: : FY9		: :FY9:		: :FY95:	: :FY97	: :	: :FY99:	:	FY01
:						<u>:</u> _		<u>:</u> _	:	<u>:</u>	_ <u></u>		<u>: </u>	<u>: </u>		
:		:	:	:	:	:	:	:	:	:	: :	:	:	: :	:	
:		:		•	•	•	•	•	•	:		•	•		:	
•	•	•	•	•	•	•	•	•	•	•	• •	•	•		•	
:		•	•	•	:	:	•	:	•	•	: :	•	:	: :	•	
•	: 1	•	: 1	:	:	:	:	:	:	:		<u>.</u>	:	:	:	
:	. 1	:	:	:	:	:	:	:	:	:	: :	:	:	: :	:	
:	: :	:	: :	:	:	:	:	:	:	:	: :	:	:	: :	:	
:	: 1	:	: 1	:	:	:	:	:	:	:	: :	:	;	: :	:	
:	: :	:	:	:	*	:	:	1	:	:	: :	:	:	: :	:	
:	:	:	: :	:	:	:	:	:	:	:	: :	:	:	: :	:	
	1		<u>::</u>	:	:	:		:		:	_: :	:	:	: :	:	
	<u> M60a</u>	1 cor	IVERSI	ON TO	M60A3	TTS					_/: :	:	:	: :	:	
:	:	:	:	:	:	:	:	:	:	:	: :	:	:	: :	2	
:	:	:	: :	:	:	:	:	:	\$:	: :	:	:	: :	:	
:	: :	:	:	:	:	:	:	:	:	:	: :	:	:	: :	2	
:	:	:	:	:	:	1	.	:	:	•	: :	.	:	: :	1	
•	•	•		•		ě	•	•	•	•	•	•	•	: :	•	
		•		•	•	•	•	•		•		•	•		•	
	•	•	· •	•	•	•	•	•	•	•	• •	•	•		•	
	•		•	:	•	•	•	:	•	•	• •	•	•	•	:	
i	(PRODU	CTIO	T COMP	LETED) :	•	•	•	•	•	: :	•	:	: :	,	
:	:		:	:	, :	:	:	:	:	:	: :	:	:	: :		
	:		:	:	:	:	:	:	:	:		:	:	: :	:	
:	:		:	:		:	:	:	:	:	: :	:	:	: :	:	
:	:	:	:	:	:	:	:	:	:	:	: :	:	:	: :	:	
:	:	:	: :	:	:	;	:	;	:	:	: :	:	:	: :	:	
:	:	;	: :	:	:	:	:	:	:	:	: :	:	:	: :	:	
:	:	:	: :	:	:	:	;	:	:	:	: :	:	:	: :	:	
;	:	:	: :	:	:	:	:	:	:	:	: :	:	:	, : :	:	
:	:	:	: :	:	:	:	:	:	:	:	: :	:	:	: :	:	
:	:	:	:	:	:	:	:	:	:	:	: :	:	:	: :	:	
<u>: </u>	:	. ;	:	:	:	:	:	:	:	:	: :	:	: ,	: :	:	
	/	P	RODUCI	: NOI:	:	:	:	:	:	:	: :	:	:	: :	:	

 c^3I

FY83: ;FY85: ;FY87: ;FY89: ;FY91: ;FY93: ;FY95: ;FY97: ;FY99: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	* 1370	;	‡ - 7777 O	:	\$		•		\$;	;	•	;		:		:
M60A1 CONVERSION TO M60A3 TTS	:FYO	9:						(93;	; FY	91;	_		‡FY	¥8/\$		FY85:		(83:
M60Al CONVERSION TO M60A3 TTS / M60A3TTS PRODUCTION : : : : : : : : : : : : : : : : : : :		-		-				<u> </u>	 -	-		- 						
M60A1 CONVERSION TO M60A3 TTS	•	•	•			•		•	•		•	•	•	•		•		÷
Low Cost Land Navigation (page 10) 6.2 / 6.3a /: : : : : : : : : : : : : : : : : : :	•	•	•	•		ū	- 7.			marc	W6043	N TO	NUEDCIO	1 (0)				<u>:</u>
Low Cost Land Navigation (page 10) 6.2/6.3a/; is in the control of the control	•	•	•	•	•	•	- / :			172	HOUA.	10				MAGA	- 7	
Low Phase Noise Crystal Oscillator (page 10) 6.2 / 6.3b Handheld Encryption and Authentication Device (page 8) 6.3b Power Sources/Advanced Tactical Power Sources (page 12) 7	•	•	•	-	•	:	•	•	•	•	•	•	OIION	MODOC	3113	MUUA		
Low Phase Noise Crystal Oscillator (page 10) 6.2 / 6.3b /: Handheld Encryption and Authentication Device (page 8) 6.3b /: Power Sources/Advanced Tactical Power Sources (page 12) 6.2 / 6.3b /: Vehicular Intercommunication System (page 16) 5.3b / 6.4 /	•	•	•				•	•	•	•	•	•	•	•		•		
Low Phase Noise Crystal Oscillator (page 10) 6.2 / 6.3b / Handheld Encryption and Authentication Device (page 8) 6.3b / Power Sources/Advanced Tactical Power Sources (page 12) 7		•	•	4	•	•	e :	ë •	•	4	4	ากโ	(222	tion	Marri	; Tand	7000	2
Low Phase Noise Crystal Oscillator (page 10) 6.2 / 6.3b Handheld Encryption and Authentication Davice (page 8) 6.3b /: Power Sources/Advanced Tactical Power Sources (page 12) 6.2 / 6.3b /: Vehicular Intercommunication System (page 16) 6.3b/ 6.4 /: Objective HF Radio (OHFR) (page 12) 5.3c / 6.3b /: Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) 6.3b / : SOS Frequency Synthesizer (page 14) 6.2 / 6.3a /: HBIC Phase 2 Chip Set (page 16) *** *** *** *** *** *** ** **	5	•	•		•	•		•		•	•	10,	(page	E LOD				
Handheld Encryption and Authentication Device (page 8) 6.3b Power Sources/Advanced Tactical Power Sources (page 12) 6.2 / 6.3b Vehicular Intercommunication System (page 16) 6.3b/ 6.4 /	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u>a_</u> /	0.3	0 · Z/	
Handheld Encryption and Authentication Device (page 8) 6.3b /: : : : : : : : : : : : : : : : : : :	•	•	•	•	•	•	• •	•	•	າດາ້	naga	***	Annille	1 °		Noi-	D4	·
Handheld Encryption and Authentication Device (page 8) 6.3b Power Sources/Advanced Tactical Power Sources (page 12) 6.2 / 6.3b Vehicular Intercommunication System (page 16) 6.3b/ 6.4 / Objective HF Radio (OHFR) (page 12) Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) SOB Frequency Synthesizer (page 14) 6.2 / 6.3a / HBSIC Phase 2 Chip Set (page 16)	•	•	•		•	*	•			107	hare		OPCTIFE	7.				
6.3b /: : : : : : : : : : : : : : : : : : :	•	•	•	•	•	•			•	•		•	•	- /∶	0+20	-/		0,
6.3b /: : : : : : : : : : : : : : : : : : :	•	•	•	•	•	•	•	. 0)	(2000	*	an De	ioori	A hom?	d A		; 	1_1	3 د :
Power Sources/Advanced Tactical Power Sources (page 12) 6.2 / 6.3b /: Sehicular Intercommunication System (page 16) 6.3b / 6.4 /: Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) 5.3b / : SOS Frequency Synthesizer (page 14) 6.2 / 6.3a / : HBIC Phase 2 Chip Set (page 16)	•	4	•	•	•	•	•	. 0)	(bage	ATCE	.011 .04	. YCHL I	Authent	apo A	ьгто	Encry		
/ehicular Intercommunication System (page 16) 6.3b/ 6.4 / Objective HF Radio (OHFR) (page 12) 6.2 / 6.3b / Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) SOS Frequency Synthesizer (page 14) 6.2 / 6.3a / HBIC Phase 2 Chip Set (page 16)	•	•		ě.	•	•		•	÷	÷	¥ -	•	•	3		/ :	JD	. 0
/ehicular Intercommunication System (page 16) 6.3b/ 6.4 / Objective HF Radio (OHFR) (page 12) 6.2 / 6.3b / Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) SOS Frequency Synthesizer (page 14) 6.2 / 6.3a / HBIC Phase 2 Chip Set (page 16)	•	•	•	•	•			. 121	(C.	Descr						
Vehicular Intercommunication System (page 16): 6.3b/ 6.4 /: Objective HF Radio (OHFR) (page 12): 6.2 / 6.3b /: Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14): 5.3b / SOS Frequency Synthesizer (page 14): 6.2 / 6.3a /: HBIC Phase 2 Chip Set (page 16):	•	•	•	•	•	•		: 12)	(page	rces	: 30r	. POWe	ACLICAL	7.				
Sehicular Intercommunication System (page 16) 6.3b/ 6.4 Selective HF Radio (OHFR) (page 12) 6.2 / 6.3b /: Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) 6.3b / : Sologo Frequency Synthesizer (page 14) 6.2 / 6.3a / : SINCGARS (page 14) SINCE Phase 2 Chip Set (page 16) :	-	-	-	•	•	7		•	•	•	•	•	5	/ :			<u>Z</u>	6.
bjective HF Radio (OHFR) (page 12) 6.2 / 6.3b /: Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) 5.3b / : SOS Frequency Synthesizer (page 14) 6.2 / 6.3a / : HBIC Phase 2 Chip Set (page 16) :	•	•	-		•	•	.	7	÷	16\	, ;	- 4:						.
Objective HF Radio (OHFR) (page 12) 6.2 / 6.3b /: Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) 5.3b / : SOS Frequency Synthesizer (page 14) 6.2 / 6.3a / : HBIC Phase 2 Chip Set (page 16) :	•	-	•		•	•		Į.	ÿ	10)	(bage	S L COM	tion sy	inicat	rcon		CULA	Ven 1
Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14): 5.3b / : : : : : : : : : : : : : : : : : :	•	•	•	•	7	•	2		•	7	;	\$	•	5	/	6,4	<u> </u>	6,3
Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14): 5.3b / : : : : : : : : : : : : : : : : : :	•	•		ě		÷	3	Ŧ	*	Ŧ	\$	•	.	; '				., .
Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) : : : : : : : : : : : : : : : : : : :	•	-	ě	ě	•	7	• • • • • • • • • • • • • • • • • • •			.	5	12)) (page			HF		
6.3b / 3	•	7	7	•	3	7	7	5	-		‡	÷	/ \$	<u> </u>	6.		2_/	6.
6.3b / : : : : : : : : : : : : : : : : : :	•	•	÷	•	7/\	, .	* · · · · · · · · · · · · · · · · · · ·	(27110			:					•		
SO8 Frequency Synthesizer (page 14) : : : : : : : : : : : : : : : : : : :	•	5	•	7	14)	page	CARS) ((SINC	A & C COM	Subs	(adlo	rne l	d Alrbo	id and	Gra	annel		
6.2 / 6.3a / ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	•	•	•	•	;	;	;	•	;	3	\$		*	5	}	\$	_/	b.3b
6.2 / 6.3a / ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		•	•	3	•	\$:	;	#	;	•	, ;	. :	;	:	_	*
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	5	•	;	*	\$;	;	;	3	\$;	14)	r (page	:61ZE1	Synt			
	7	3		\$	\$;	;	*	•	;	\$:		2	_/	6,3a		6.2
	2	3		;	;	;	;	:	3	:	;			٠, ١	3			
3 / 6.3m / :	7	\$	‡	‡	:	:	;	:	:	:	2) ;	age 16)	FE (D4	hip		Phe	
	•	‡	•	:	;	;	;	‡	;	‡	;	\$	* *	3	_/	6-3a	\mathcal{L}	3
	\$:	:	:	:	•	‡	:	:	:	\$		•	:				\$
VHSIC Phase 1 Chip Set (page 16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	•	\$	‡	\$	\$;	;	:	2	:	‡	5) ;	page 16	Set (Chip	se l		

 $c_3 I$

;	; ;	; ;	:	;	;	\$	\$:	\$:	;	:	: ;	÷
FY83:	\$FY85 \$:FY87:	\$FY	89;	:FY9	1:	:FY9	3:	\$FY?	95:	:FY9	7 ‡	:FY99:	:FYO
	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>	<u> </u>		:	<u> </u>	:	<u>:</u>			;	;	÷	: :	;
;	: :	: :	:	\$	\$:	\$	\$	\$;	:	•	• - •	:
-:	; ;	: :	:	:	;	÷	;	:	;	;	\$;	\$ \$	\$
<u>/</u>		M60A1 CON		N TO	M60A3	TTS			_/;	\$	\$:	: :	;
	_/ M60A3	TTS PRODUC	TION	\$:	\$	\$	•	\$:	;	‡	: :	\$
\$: :	: :	:	\$:	;	\$	\$	\$:	\$	÷	: :	5
#	\$ 5	: :	;	:	;	:	;	•	3	\$;	\$: :	‡
Tactic	al Power	Supplies ((page	14)	<u>;</u>	\$	\$		<u> </u>	\$:
/		6.2	/ 6.	3a /			6.3b					6	.4	
;	; ;	: :	;	:	;	;	;	⇟	;	\$	3	:	; ;	;
		dio Appliq	ues fo	r SIN	CGARS-	V (pa	ge 6)	•	:	2	:	;	; ;	3
$\sqrt{6}$	-2/6.3a		:	\$:	;	;	;	:	\$	\$:	: :	\$
;	; ;	_: :	\$		\$;	:	:	:	3	;	;	: :	;
Armor/	Air Cover	t Net (pag	e 6)	:	;	:	‡	;	•	:	:	\$: :	;
6.	3a / :	3 3	.	‡	\$	\$	5	ŧ	;	\$;	\$: :	:
;	: :	: :	:	;	;	;	:	;	:	:	:	:	: :	3
Module	s for Tecl	hnology In	sertio	n (pa	ge 12)	;	:	;	‡	•	:	;		3
6.	2, 6.3a		7:	;	:	\$;	3	:	:	;	:	: :	\$
;	3 3	- :		.	5	:	:	•	:	•	<u>.</u>	2	1 1	
Freque	ncy Hoppin	ng Antenna	Multi	plexe	r (pag	e 8)	5	5	:	:		:	1 1	•
		6.3a / /	6,3b	7	1		:	:	2	•	3	2		2
• •	: :	1 1		':	2	1	•	3	•	2	1	\$	1 1	5
High P	ower VHF	Vehicular	Antenn	a (pa	ge 8)	1	:	•	•	•	1	•		
/6.3b		2 2	1		1	ž	•		•	5	•	•		•
2			•	4	•	•	•	4		•	•			•
500 Wa	tt VHF Por	wer Amplif	ier (p	ace 6) :	1	•	1	•	•	•	•		•
/6.37:	2 1			-6- "		•	•	4	•	•	•	•		•
			•	•		•	•	•		•	•	:		
Flat P	anel Elect	rolumines	cent (ei.) n	ienlev	(nage	໌ ຄ)	4	•		•	•		4
/		- TOTALIA MICE	7	9	*	' bag	• • •	:	•	•	•	•	• •	•
	4 4			•	•	•	•		:	•	•	•	• •	•
•	• •		•	•	•	•	•	•	•	ě	ě	÷	• •	÷
•	• •	, j	•	•	•	•	•	•	ř		7	•	• •	;
•	• •	3 3	*	•	÷	ē ·	3		*	7	7	•	3 3	.
,	• •		ř	•	•	÷	\$ 	•	ī	;		;		\$
3			•	3		\$	¥	3	•	:	3	:	: :	;
ş	; ;	; ;	÷	\$	\$;	\$	\$	\$	*	;	\$	· :	\$

FIREPOWER

***************************************	: :	:	:	:	:	;	:	:	?	:	:	:		:	1	:
FY83:	:FY85:	:FY8	7:	:FY89	:	:FY91	:	:FY93	:	:FY95	:	:FY97	:	FY99	:	:FY01
					:	<u>:</u>	<u>:</u>		<u></u> -		<u> </u>		-		;	
/ 		60Al CO	NVER	OT HOLE	M60A	3 TTS				7:	:	:	:	•	:	:
	7: :			A3TTS				:		:	:	:	:	;	:	:
:		:	:	:	:	:	:	:	:	:	:	:	: ;	:	:	:
:	: :	:	:	:	:	:	:	:	: .	:	:	:	: :	:	:	:
	of High	Densit	y Tu	ngsten	Penet	rator	A11	oys (pa	age 4	41g)	:	:	:	:	:	:
6.2/ 6	.3a /:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	1 1	:	:	:	•	:	:	:	:	:	:	:	:	•	:	:
	viromer	t Activ	e RF	Seeker	(MAR	FS) I	et I	Bed (p	age 4	41a)	:		:	:	:	:
6.2/	: :	:	•	:	:	:	:	•	•	•	:	•	•	:	:	:
	: : :				:	:	:	:	•	:	ē	:		•		•
dvanced	LOVA Pr	opellan	t Tec	conolog	у (ра 7	ge ZU	,	:		3	:		•		:	
	0.2	•			<u>'</u>	•			•	•	•	•	•			•
i Vernais	n and Pr	•	n af	Tungat	i on Al	: 1	i for 1	i M Den	i atra:	i tian A	nalic	etion	. (na:	• 20 28	,	•
6.2/	6.3a		u Or	TOURSE	• en wr	. Uy 6	• •	TO I SIL		•	Phrrc	•	i /had	•	•	•
<u> </u>			•	•	•	•	•	•	•	:	:	:	•	•	•	2
Idvanced	Millimo	ter or	RF S	eeker f	or La	ு பன் Co	nibail	(pare	20)	ż	Í	Î	•	- :	:	-
:/	6.2		7:	:	:	:	:	:	:	•	:	:	•	•	:	:
:	: :	:	•	:	:	:	:	:	:	:	:	:	:	;	:	:
ligh Per	formance	Combat	Veh:	icle St	ation	ary P	latfo	orm Fi	re C	ontrol	(pag	e 34)	:	:	:	:
6.2/	6.3a /	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:
arge Ca	liber a	d Nucle	ar A	rmament	s Tec	hnolo,	gy/F	ıze Te	chno	logy -	FZ f	or Ta	ok Azen	ao (p	age	40)
6.2 /	6.3a / 6	.3b /	(5.4		:	:	:	:	:	:	:	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	:	:	;	:	:	:	1	:	:	:	2	:	:	:	:
:	: :	:	:	:	:	:	1	1	:	:	:	•	:	:	:	.:
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:		:	•	:	•	:	:	:	:	:	:	:	1 :	; i	:	:
:	: :	:	:	:	:	:	:	:	:	•	:		I	:	:	:
I	: :	:	:	:	:	:	:	1	:	1	:	1	:		I	:
*		:	:	:			:	ī	:	:	:					:
:		:		7	•	•	I	1	:	7		•			•	
:	: :	:	Z	7	i .	I	:	3	:	:	:	X	.	I	I	:

FIREPOWER

******			•												•	
FY83:	:FY85:	:FY87	, .	FY89:	•	FY91	• •	FY93	•	FY95:	•	FY97	•	FY99	•	.FYOL
: :	: :	:	•	: :	;	!		:	•	: :	:				:	:
<u> </u>		<u>-</u>						:			<u></u>			:	<u>. </u>	
:/	<u> </u>	60Al COL	VERSIC	ON TO	M60A	TTS			7	: :			:	- •	:	:
:7	7: :	•		TTS P				:	:	: :			•	: :	:	:
•	. :	:	:	: :		:	•	:	:	: :	:	: :	:	:	:	:
: :	: :	:	:	: ;		:	:	:	:	: :	:		:	:	:	:
:High En	ergy Expl	osives	and Pro	pella	nts/1	Format	tion	of Hi	gh For	rce Pr	opell	ants	(page	a 34)	:	:
:/	6,2	/	6.3a				:	1	:	: :		;	:	:	:	•
: :	ž :	:	:	:		: :	:	:	:	: :	:	:	:	:	:	:
:Researc	h in Phys	ics of A	Armamei	nt (Ca	mpoe:	ite Ho	eavy	Metal	Pene	trator	Mate	rial	s) (p	age 4	lc)	:
:/	6.2			7 :		:	:	:	:	: :	:	;	•	:	:	:
: :	: :	:	:	: :	;	: ;	.	:	•	: :	:	: :	:	:	:	:
: Synthee	is of Hip	h Energy	y Explo	sives	Sup	erene	rgetí	c Exp	losiv	e Form	ulati	ons	(page	41i)	:	:
:/	6.2	/ 6	.За /	6.3	b /	:	:	:	:	: :	:	:	:	:	:	:
: :	: :	:	:	: ;	:	: :	:	:	:	: :	:	: :	:	:	:	:
	te Compor	ients for	r Armar	nent (page	26)	:	2	:	: :	•	:	:	:	:	:
: 6.2/	6.3a /:	:	:	: :	:	: :	:	:	:	: :	:	:	:	:	:	:
: :	: :	:	:	: :	:	:	:	:	:	: :	:	: :	:	:	:	:
	d 105-MM	APFSDS-	r (page	e 36):	:	: :	!	<u>•</u>	:	: :	2	:	:	:	:	:
:/ 6.3a	<u>.</u> /: :	:	:	: :		:	•	:	:	: :	:	;	:	:	:	:
:	; :	:	:	: :	;	: :	:	:	: :	: :	:	:	:	:	:	:
	dated Pro			ligh V		ity A:	<u>i</u> r De	fense	Round	d (pag	e 28)	٠ :	: ;	:	:	:
:/ 6.2	/6.3a/	6.31	b /		6.4	/	/	:	:	: :	:	:	•	:	:	:
: ;	: :	:	:	: :		:	3	:	:	: :	:	:	:	:	:	:
	ion Coati	ings for	Deple	ted Ur	anium	n (pag	ze 28		: ;	: :	:	;	:	:	:	:
:/6.2/	6.3a /	:	•	: :	. :	:	:	1	:	: :	:	:	:	:	:	:
: :	1 1	:	: :	: :	:	: :		:	:	: :	:	;	: :	:	:	:
	artle (pe	ige 41a)		<u> </u>	. :	:	:	:	:	: :	:	:	:	:	:	:
	6.3a		6.4	/	:	:	•	:	1	: :	:	: :	•	;	:	:
: :	: :	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:
: :	: :	:	:	: :	:	:	;	:	:	: :	:		:	:	:	:
• •	: :	:	:	:	:	:	:	:	:	: :	:	1	;	1	:	:
: :	: :	:	: :	: :	;	:	:	:	:	:	:	: ;	:	;	•	:
: :	: :	\$:	: :	:	: :	:	:	:	:	:	:	:	1	:	:
: ;	: :	:	:	:	:		:	:	:	: :	:	;	:	1	:	:
: :	: :	:	: :	: :	:	:	;	•	: :	: :	:	:	;	}	•	:

FIREPOWER

: :		•		-		<u> </u>		<u></u>	•	 	-	•	•	<u> </u>	:	*	
:FY83:	:FY8	5:	FY87	:	FY89	:	:FY91	:	:FY93	• •	:FY95	- :	FY97	:	:FY99	:	FY01
: :	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:		
: :	:		:	:	:	:		:	:	•	:	<u>:</u>	:	:	:	•	
:/		M60/	Al CON								:	:	:	:	:	:	: :
:/	_/:	:	:	:M60A	3TTS	PRODU	CTION	:	:	:	:	:	:	:	:	: :	: :
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	: :
: :	:	2	. :	:	:	•	:	:	:	:	:	:	:	:	:	:	: :
: Armamen			<u>lo</u> se (ombat	-Heav	у (ра	ge 2 2)	:	:	:	?	•	•	:	:	: :
:/6.2/	6.3	8	_/	:	:	:	:	:	1	:	:	:	:	:	:	:	: :
	•	•	. : _	* -	:	:	:	•	:	:	:	:	:	:	:	:	
High De			ic Ene	rgy P	'enetr	ator	Mater	1818	(page	34)	:	:	: -	:	:	:	
:/6.2/	0.34	/ :	•	•					•		•		•			•	
All Via	i ihilit	· ·· Tor	· · · · · · · · · · · · · · · · · · · ·	aniai	tian	i for C	i mahat	Vobí	.la (:		22)	•	•	•			
-	6.		KEL AC	quisi	7	•	• OHDAL	* A € 11 T	·	i hake	•	•	•	•		•	
***************************************	•	•	•	•	<u>'</u>	•	•	•	•	• •	•	•	•	• •	•	•	• •
:Precisi	on Aim	Tech	nique	(page	41c)	•	<u>.</u>	•	•	•	•	•	• •	• •	-	•	
:/	6.2			3a /	· .	:	:	:	:	:	:	:	:	:	:	:	
: :	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
:Thermon	echaní	cal Tr	reatme	ni fo	r Imp	roved	Perí	orman	ce of	DU-3	/4 Ti	KE P	enetr	ator	Alloy	в (рад	ge 41k
:/6.2/	6.3a	J	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	:	- :	:	:	:	:	:	:	:	:	:	:	:	:	:	: ;	: :
:Rocket	Assist	Kine	tic En	ergy	(page	41g)	:	:	:	:	:	:	:	:	:	: :	: :
:/ 6.2	/:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	: :
: :	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	: :	: :
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
: Inertia	1 Comp	onent	Devel	opmen	it (AT	AADS)	(pag				<u>:</u>		<u>:</u>		<u> </u>		:
:/						_		6.	2								/
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:
		•	•	•		ē •	: -			: -	:	:	:				: :
• •	•	•	•	•	•	4	.			•			;				
• •	•	•	•	•	•	•		ě	•	•	•	•	v	• •	•	•	
• •	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	
	•	•	•	•	•	•	•	· /,	•	•		•	•	•	•	•	
: :	:	•	:	:	:	:	•	•	•	• •	•	•	•	• •	•	•	• •
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
	•	•	-	•	-	•	•	•	•	e .	•	•	•	•	•	•	• •

FIREPOWER

or friend the second of the

: :	: :	•	:	:	:	:		:	:	: :	:				:	: :
:FY83:	:FY85:	:FY	87:	:FY89	:	:FY91:	:	:FY93	:	:FY95:	:	FY97:	: :	FY99	:	:FY01:
<u>: : : </u>	<u>: :</u>	<u></u>	:	<u>:</u>	:	:		<u>:</u>	:	: :	:				:	<u>: :</u>
:						:	<u></u>	<u>:</u>	: ,	: :	:	:	: :	}	:	: :
:/		M60Al C						 	/	: :	:				:	: :
:/	_/: :	:	:Mol	ASTTS	PRODU •	CTION	•	:	:	: :	:			;	:	: :
		•	•	•	•	•	•	•	•	• •	:			•	•	
• Combat	Vehicle	Anti-An	mar (1	1896 26	;	•	•	:	• •	: :	:				• !	: :
:/	Tentero	6.3			7	•		:	:	: :	:			•	:	: :
:	: :	:	:	:	;	: ;	:	:	:	: :	:	:	: :	3	:	: :
	uel Ramj	et (pag	e 41g)	:	:	: :	:	:	:	: :	:	:	: :	:	:	: :
:/6.2 7	$\sqrt{6.2}$:	1	:	:	1	:	:	:	: :	:		: :	:	:	: :
: : <u>/</u>	6.3 /:	:	:	:	:	:	:	:	:	: :	:	:	: :	:	:	: :
: :	: :	: :	:	:	:	: :	:	:	:	: :	:	•	: ;	.	:	:
:Tank Sr	mart Muni	tions (page 4	111)	:	:		:	:	: :					:	: :
:/	6.2		<u> </u>	:	:		.		:	: :	•			,		: :
: Process	ing Tech	ກດໂດຍນ	of Tur	i Ioeten	Allov	e (par	e 41	c)	•	• •	•				•	• •
:/ 6.2		3a /	:	:	:		,- ++ !	:	:	: :		,		•	:	: :
			:	:	:	:	:	:	:	:	:				:	: :
:Develo	ment of	High De	nsity	Compos	ite P	enetr	ator	(page	28)	: :	:	:	: :	;	:	: :
:/ 6.2			:	:	:	:	:	:	:	: :	: :	; ;	: ;	:	:	: :
: :	: :	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	: :
	tatic Ext		of Tur	ngsten	Alloy	s (pa	ge 34	.)	:	: :	:	:	:	:	:	: :
:/ 6.2	/ 6.3	a_/:	:	:	:	•	:	•	:	: :				:	:	: :
• • • • • • • • • • • • • • • • • • • •	: : :		; !		:	:	:	; 41:1	:	: :					:	: :
:/ 6.2	Materia / 6.3		rong i	voa ken	etrat	·	• bage	411)						•	•	
1 0.2	/ 0.3	4	•	•	•		•	•	•				•	•	•	: :
: :	: :	•	•	•	•	•	!	:	•	: :				:	:	: :
:		:	:	:	:	:	:	:	:	:			•		:	:
: :	:	:	:	:	:	:	:	:	:	: :		;	:	:	:	: :
: :	: :	:	:	:	:	:	:	:	:	: :	:	: ;	:	:	:	: :
: :	: :	:	:	:	:	;	:	:	:	: :	: :	: :	: :	:	:	: :
: :	: :	:	:	:	¥	:	:	:	:	: :	: :	: ;	:	:	:	: :
: :	: :	: :	:	:	:	:	:	:	:	: :	: :	: ;	:	:	:	:
. \$: :	:	:	:	:	:	:	•	:	: :	:	;	: :	:	:	: :

MOBILITY

												•			•	•	
FY83:	FY85:		: FY87	•	:FY89	•	:FY91	:	:FY93	•	:FY95	· ·	FY97	•	:FY99	:	:FY01
:	: :	•	:	:	:	:	:	:	:	:	:	: :			:	:	:
:	: :		:	:	;	:	:	:	;	• •	;	: :		:	:	:	:
											_:	: :		:	:	:	:
							3 TTS	-				: :	1	;	:	:	:
	_/ -	M60V;	BTTS	PRODU	JCTION	ł	:	;	:	;	:	: :	;	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	: :	;	:	:	:	:
	: Mobility	T 1	: !- (-	:	: . .	:	:	:	7	•	:	: :	:		:	:	:
				age 4	•0)	:	:	:	:	:	:					:	:
	1,6.2,	6.3		•	•	•	•	•		•	•	• •	,	•	•	•	•
Tank-Au	tomotive	Tacl	1/Eng	ine (Concer	ts fo	r Alt	ernat	e Fue	· ls (r	age 50	5) :			:	:	•
,		6:					t:	:	:	:	:	:	:	:	:	:	:
:	-:			$\overline{\cdot}$:	 '	':	:	:	:	:	: :	:	;	:	:	:
Transmi	ssion Co	mpone	ent D	evel	pment	(pag	e 56)		<u>:</u>	:	:	: :			:	:	:
							(, , 3									
	: :	_	:	:		:	:	:	:	:	;	: :	;		:	:	:
	nts for			nal/I	ton-Co	nvent	Lonal	Engi	rues (page	52)	: :			:	:	•
	6.1, 6.2	, 6.	<u> </u>	<i>F</i>	:	:	:	:	:	:	:	: :	:	<u>.</u>	:	:	:
Vahiola	Engine	Dave	i Lanna	; n+/F:		Conce	· nto f	i or Al	: terne	: -	; 1010 ()	, naga 5	8)	,	•	•	•
· en (C1E	Eugrue	DEVE.	Opine	110/61	IRTHE	COHCE		6.3	LEIMA		icre /	page 3	,	•	•	•	•
			:		:	:	:	<u>:</u>	:	:	~'	· ·	,		:	:	:
Corrosi	on Preve	ntat	ives	(page	<u>48</u>)	:	:	:	;	:	:	: :		:	:	:	;
	1,6.2,			;	:	:	·:	:	:	:	:	: :	:	;	:	:	:
:	: :		:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:
Advance	d Air Fi	ltra	tion	(page	42)	:	:	:	:	:	:	::		:	:	:	;
,								_6.:	2								
; C	: : : : : : : : : : : : : : : : : : : :	: : • • • • •	: 4	:	:,	:			:	:	:	: :	:		•	•	•
	ic and A		nate	rueli	· / bas	e 20)			•							:	:
<u>.</u>	.1,6.2,	v. 3	!	•	•	•	•	•	•	•	•	• •	;	•		•	
Self-Cl	eaning A	i Lit F	ilter	· (sc/	(F) (7	See 5	4)	•	•	• •	•	• - •		• •	•	•	•
		<u> </u>	3	, 007			į.	:	:	:	:	- ·		· :	:	:	:
				•			•	•	•	• .	•	• •		•	•	•	•

MOBILITY

FY83:	FY85:	:FY87:	: FY	89:	FY9	1:	:FY93	:	:FY9!	· 5:	:FY97	, :	:FY99:	!	:FY01
	: :	::	:		:	:	.:	:	2	:	: :		2 2	1	:
:	: :	: :	:	;	:	:	;	:	:	:	:		2 2		:
									:	:	:	:	: :	}	:
		DA1 CONVE			A3 TTS	3			<u> </u>	:	2 3	;	: 3	:	2
	/ M60	DASTIS PR	ODUCTI	on	:	:	:	:	:	:	:	;	: :	:	2
:	; ;	2 :	:	:	:	:	:	:	:	:	;	;	: :	:	2
:	: :	: :	2	.:	:	:	:	:	;	:	:	;	: :	:	:
	istant Tra		ension	(page	54)	:	:	:	;	:	:	:	: :	;	;
5.2/		6.3a		_/:	:	:	;	:	:	:	:	}	: :	;	:
;	_; ; ;	: :	:	:	:	;	:	:	:	:	:	;	2 :	:	:
	Damper (p.	age 48)	:	:	:	;	:	:	:	:	:	;	: :	;	:
6.3a	/:	: :	:	:	:	:	:	:	:	;	:	;	: :	;	:
:	:		: _	:	:	:	:	:	:	:	2		:		;
	t Land Nav	<u>ig</u> ation (page 5	2)	2	:	2	:	:	:	:	:	: :	:	:
.2/	6.3a	_/: :	:	:	:	2	;	:	:	:	:	;	: :	:	:
2	: :	: :	:	.:	:	:	:	3	<u>:</u>	i	:	;	: :	:	:
rack R	ubber Deve		page 5	<u>6)</u>	;	:	:	:	:	:	:	;	: :		:
		6.2		_/:	3	:	:	:	:	2	:	:	:	;	:
				.:	:	<i>,</i> ;	:	;	:	:	:	;	: :	}	:
	tal Position	on and At	titude	Subsy	stem	(page	50)	:	:	:	:	;	: :	1	:
6	<u>.2</u> /:	: :	. :	:	:	:	2	2	:	;	:	;	;		;
	_; ; _	: :	<i>,</i> :	:	:	Z	:	:	:	:	:	:	2 :	!	2
luidic	Heading R	<u>ef</u> erence	(page	48)	:	:	:	:	:	:	:	3	: :	;	:
	6.2	_/: :	:	:	:	:	:	:	:	:	:	;	: :	:	;
·		: ::	. :	:	<i>,</i> ;	:	:	:	:	:	: :		: :	:	:
igh Mo	bility Ener		lent S	ystem .	(page	50)	:	:	:	:	: :	;	: :	;	:
:	/	6.3a		_/:	:	:	:	:	ž	;	:	:	: :	:	:
. :		: :	. :		:	:	:	:	:	:	: ;	;	: :		:
vance	d Composite	e Materia	IB (Pa	ge 42)	;	:	:	:	:	:	:	ł	: :	:	2
	6.2		_/:	:	•	:	:	:	2	:	:	:	: :		:
	2 1	, ;		:	:	:	:	፡	;	;	: :	:	: :	:	:
	Thermal V	lewer (pa	ge 48)	:	:		:	:	:	:	:	}	: :		Ž.
5.4/	:	: :	2	:	:	:	:	:	:	2	:	1	: :		:
:	:	: :	:	:	2	2	:	:	:	:	;	:	: :		:
2	: :	: :	2	:	;	;	:	:	:	:	: :	;	: :	:	2

MOBILITY

:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:
FY83:	:FY8	5:	:FY87	7 :	:FY89	:	:FY91	:	FY93	:	:FY95	:	:FY97	:	:FY99	:	:FYO
	:	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>: </u>	<u>:</u>	<u>:</u>	<u> </u>	<u>:</u>	<u>: </u>	<u>: </u>	<u>: </u>	:	<u>: </u>	<u>:</u>	<u> </u>
:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:
											.:	:	:	:	:	:	:
/	,		Al CON				A3 TTS			/	:	:	:	:	:	:	:
/	/	- Mot	ASTTS	PRODU	CTIO	ļ	:	:	•	:	:	:		:	:	:	•
:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:
			Danuari	:	/ .				: -	: -	:	;	:	:	:	•	:
Advance				Sourc	es (I	age 4	+4)	: :	•	:	:	:	:	•	•	:	:
6.2		6.3	<u>b</u>	<i>[</i> :	:	:	:		•	:	:	:	:	:	:	:	:
; raala n	•	F	Come	; .1 (~:	i .a.a 54	; :	ĭ	5				•	•	• •		•	•
Frack R		╼.	Contro	or (be	ige ot	"	•		•	•	:				:	:	;
6.21	<u>6.3a</u>	₽.	:	•	:	:	:	;		: -	•	:	:		<u>.</u>		•
	; , m			:	: •	: : . • . //		; 		• , , , ,	:	:	:	: -	:	•	:
ldvance	d irac	Kaz			ater	. ALB/ i	Struct	ures (page	44)	•	:		•			
•	·		6.	<u>3a_</u>		ľ		•	•	•		•	•	•		•	
iATO/P.		: Tara - 1			, =	50)		•	•	. -	•	•	•	•	•	•	•
ATO/Fo	reign	ITAC	CHIRL	AIR	page	32)	•	<u></u>	5.2	<u>. </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
							4		<u> </u>		^	•			-	•	 -
il Abr <u>a</u>	ma/M60	Tree	rk Tmns	COVADA	(1		52)	•	•	•	•	•	•	•	•	:	•
6.3a			-K Impi		•	age .	•	•	•	•	:	:	•	•	•	:	•
6.50	 /:	•	:	:	:	•	:	•	•	•	:	:	•	•	•	:	•
45-65 T	on Tra	ck (s	nade 41	, i	•	:	•	•	•	•	•	•	•	•	•	•	:
	.3a	7	, .	•	•	:	•	•	•	•	•	•	•	• •	•	•	:
	· 2a	- /.	•	•	•	•	•	•	•	• •	:	•	•	- -	•	•	•
	•	•	<u>.</u>	•	:	:	•	•	•	•	•	•	•	•	•	•	:
•	7			•	•	•	•	•	•	•	•	:	:	•	•	•	•
:	:	•	•	•	•	•	•	•	•								
•	:	:	:	:	:	:	:	:	: :	•	:	•	•	•	•	•	•
	•	:	:	:	:	:	:	:	: :	• :	:	:	•	• •	• •	:	:
•	•	:	:	:	:	:	:	:	: :	• : :	:	:	•	: :	• •	:	:
	*	:		:	:	:	:	:	•	• : :	:	:	• • •	: :	:	:	:
* * * * * * * * * * * * * * * * * * *		:		:	:	:		•	•	• • • •	•	•	•	: : :	:	:	•
	:	:	:	:		•	:	:		•	•	:	:	•	•	:	

SENSING

:	: :	: :	1 1	: :	;	}	: :	2 2	; ;	:
FY83:	:FY85:	:FY87:	:FY89:	:FY91:	: F	Y93:	:FY95:	:FY97:	:FY99:	:FY01
	<u> </u>				<u></u>				_	<u> </u>
, :	; ;	AL CONVER	SION TO MGO))	<u>:</u>		- 		, ,	•
/		O ASTTS PRO		, 115			 /, ;		• •	•
/	 /, Fig.	, , ,	opociton,	• •	•	•	• •	, ,	• •	•
•	• •	2 2	: :	2 2		•	2 2		1 1	2
Thermal	Weapon S	ight (page	79a) :	2 2		2	2 2	2 2	2 2	2
$\frac{16.3b}{}$	6.4	/ · · · · · · · · · · · · · · · · · · ·	; ;	2 2	:	:	: :	: :	: :	:
:	: :	<u>'</u>	: :	: :	:		: :	: :	2 2	;
Mulpli	Line UV-F	IR Tunable	Lasers (pa	age 72):	;	2	: :	2 2	; ;	:
/	6.		_7: :	-:	:	:	: :	2 2	: :	:
}	: :	; ;	: :	: :	:	;	: :	: :	2 2	;
Prototy	pe Roboti	c Sensor S	ystem (page	<u>e 7</u> 6) :	:	2	: :	: 2	: :	;
/	6.	3 a		<u></u>	:	:	: :	: :	: :	1
:	; ;	;	: :	: :	:	:	: :	2 2	: :	;
Process	ors for Co	ommon Modu	le FLIRS (page 76)	:	:	: :	2 2	: :	;
<u>/</u>	/:	: :	2 2	: :	2	2	2 2	: :	: :	:
:	: :	:	2 2	: :	:	:	: :	: :	: :	;
Multi-I		aser Modul	e Target A	cquisitio	on and	Engage	ment (page	: 74) :	: ;	;
	6.2		/: :	; ;	: :	:	1 1	• :	: :	;
;		; ;	2 2	: :	: :	:	2 2	: ;		2
		o Sensor D	evelopment	(page /4	;) :					
/6.2, 6).3a/									
, A Maria	i .i. Maasa		: : (6)			•				
	rc rarger	vedaisifi	on (page 64	+) : :		•				•
$\frac{6.3a}{}$						•	• •		• •	,
i Advance	d Ground	to Ground '	Target Acqu	i .ieitian	Podom	(nece	62)	<i>i i</i>	* *	,
Auvance	DITOUTE DE	ro orouna	-/ Ker ved	, , ,		(hake	. ,	•	• •	•
6.3		2 2	 ': :	, ,	•	•	• •		, ,	•
, 9,3	 -/,	2 2	• •	· ·	•	•	· · ·	, ,	2 2	,
•	2 2	2 1	2 2	:		•	: :		1 1	!
2	2 2	: :	2 2	2 2		2	: :	: :	1 1	2
2	2 2	: :	2 2	:		2	: :	2 2	2 2	2
:	1 1		2 2			2	2 2	2 2	1 2	:
-	•		•, •		•	-	•	• •	-	-

SENSING

:		4 .	: :	; ;	:	: :	: :	: :	:
FY83:	:FY85:	:FY87:	:FY89:	:FY91:	:FY93:	≴FY95:	:FY97:	:FY99:	:FYO1
:									
,:	: :	: :	i i	7.		 ;			
,			SION TO M6	DAJ TIS					
/	/ M60	A3TTS PR	ODUCTION:						
:	: :	: :	: :	: :					•
	1 1	((()							•
Coust 10	Sensors	(page 60)			: :				
	_/:	: :		•	•			• •	•
		1 64			70).				•
larger i		Signatur	e and Envi	ronments ()	page /o):				•
	6.2							: :	•
			(()					• •	•
nemica.		ech (page	00):						•
	6.2		/: :				• •	: :	•
	• • • • • • • • • • • • • • • • • • •				**************************************				•
DUEV O		ic riduia	Agent Dete	ctor, AM63	, XM86 (pag	(e 00) :			•
6.3b/	6.4				4 4				•
		1	70)				: :		•
LEC PA	uet fr dy:	aplays (pa	ike /0)	4 4		• •	: :	•	•
		· · · · · · · · · · · · · · · · · · ·	/ · · · · · · · · · · · · · · · · ·	6 4		• •	• •		•
144 C		•	Acquisition	(222 74)		: :	• •	•	:
6.27	ensor Alr	nereuse k	eduisition.	(page /4)	• •	: :			-
0.2/					• •	: :			÷
	i i d Manan Cena	i i ndard Cand	iition Sens	are (nege	70).			• •	•
6.27	a Wall-DC4	HORIC CONC	ALCEON DENO	ore (base	, , , ,			•	-
TO . L.			• •			•	• •		•
•			4 .		: :	: :		; ;	
•			: :		• •		4 6	, ,	•
•							: :	: :	•
•	1 L							•	:
			4			: :	• •	· ·	•
•		• •		: :			• •	•	•
•	4 4	4 4	<i>∂</i>		• •	• •	•		•
Ū.	* *				• •	• •	•		•
		• 1							•

FY83:	: : :FY85:	: : :FY87:	: : :FY89:	: :FY91	. 2	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	.FY95:	:FY97:	FY99:	: FY01
:	1 1	; ;	; ;	:		: :	: :	: :	: :	:
							: :	: ;	: :	:
		OA1 CONVE		M60A3 TTS	3		<u> </u>	2 2	: :	2
	_/ M6	O A3TTS PI	RODUCTION	3	;	: :	;	: :	2	2
1	2 2	: :	2 2	:	:	: :	2 2	: :	: :	:
:	: :	: :	: :	:	2	: :	; ;	: :	: :	:
	Dynamics	Sensor (pa	age 79a):	:	:	1 1	2 2	: :	: :	:
5.2/	: :	: :	2 2	2	;	:	: :	: :	; ;	:
2	: :	: :	: 1	2	:	: :	2 2	: :	: :	3
	nvironment	Active R	F Secker	Test Bed	(page	74):	: :	2	: :	:
5.2/	: :	: :	: :	;	:	: :	2 2	: :	: :	:
:	: :	2 2	1 1	:	:	: :	: :	: :	: :	:
cquisi	tion Subsy	stem (pag	e 60) :	:	<u> </u>	1 1	: :	<u>: : : : : : : : : : : : : : : : : : : </u>	<u>: : : : : : : : : : : : : : : : : : : </u>	:
						6.2			,	
:	: :	: :	2	:	:	: :	; :	; ;	: :	:
uiet R	adar for A		c (page 7	6) :	:	2 2	: :	: :	: :	:
5.1/	6	.3a /:	:	:	:	:	: :	: :	: :	:
2	1 1	2 2	2 2	:	:	: :	: :	: :	: :	:
	Lasers (pa	ge 74):	: :	:	:	: :	: :	: :	: :	:
<i>]</i> :	: :	: :	: :	:	:	; ;	2 2	: :	2 2	:
:	: :	1 1	1 1	. :	:	: :	: :	: :	: :	:
	Assessment	Concepts	(page 66) :	2	: :	: :	: :	: :	3
6.2	_/: :	;	: :	:	:	: :	: :	2 2	: :	2
• .		: ;	: :	:	:	: :	: :	2 2	: :	2
	Muzzle Se	nsing (pa	ge 68) :	:	:	: :	: :	:	2	:
6,2	<i>]</i> : :	; ;	: :	2	:	: :	: :	: :	: :	2
;	1 1	; ;	: :	:	:	: :	2 2	2 2	2 2	2
	cron IRDA	(page 60)	: :	:	:	: :	: :	: :	1 1	2
<u> </u>	6.2 /:	; ;	: :	3	:	: :	1 1		: :	2
	<u>:</u> :	:	2 2	2	:	: :	2 2	2 2	1 1	3
	s Thermal	Viewer (p	age bb):	2	2	1 1	: :	2	2 2	
6.4	/:	1 1	2 2	:	:	1	1 1	2 2	2 2	•
	1	: :		()(1)		70.			1 1	;
	tomatic Ch	emical Ag		(ACADA)	(page	(Ya):	1 1	1	:	2
6	. 2		6.4	:	3	1	: :	: :	2 3	:
;	: :	2 2	: :	:	2	: :	; ;	: :	: :	3
2	2 2	2 2	2 2	1	2	2 2	2 2	1 1	2 2	1

SUPPORT

	•			*		•	•		•		:	: :	:	: :	:	:
FY83	}:	:FY85	5 :	:FY8	7:	:FY8	39:	:FY91	:	:FY93	:	:FY95:	:FY97	: :FY99) :	:FYO
	•	•	•	•	•	•	:	:	:	•	:	: :	:	:	:	:
	÷		<u>:</u>	- :		:		:	:		:	: :	:	: :	:	:
	•	•	•	•	•	•	•	•	-	•	-	: :	:	: :	:	:
/		M60A	CO	NVERSI	T NO	O M604	3 TT:	5	4			7: :	:	: :	:	:
4				60A3TT				:	:	:	:	- : :	:	: :	:	:
	:		:	:	:	:	:	:	:	:	:	: :	:	: :	;	:
	•	•	:	•	:	:	:	:	:	:	:	: :	:	: :	:	:
av hA	nced	l Main	-Tan	k Inte	erat	ion St	udie	s (page	80)) :	:	: :	:	: :	:	:
~ -	_			:	:	:	:	:	:	:	:	: :	:	: :	:	:
<u>_</u>	TB C	←,− −		· •	•	:	:	:	:	:	:	: :	:	: :	:	:
MBC	Deco	ntanii	nati	on (pa	ge 8	(2):	:	:	:	:	:	: :	:	: :	:	:
,—	-		"):	· · · · · · · · · · · · · · · · · · ·	 -	:	•	:	:	:	:	: :	:	: :	:	:
'			' ,	•	•	•	•	•	•	•	•	: :	:	: :	:	:
Comb	o not li	le fue l	ino	(page	80)	•	•	•	•	•	:	: :		: :	:	:
7		7		·	•	•	•	•	•	•	•		:	: :	:	:
		-1:	•	•	•			•	•	•	•		:	· ·	•	:
Infe	• armet	ion R	• •nni	rement	e fo	r Com	nand .	& Contr	rai (page 8	(0)	: :	:	: :		:
	_		· dar	*	•	•	•	•	•	:	•		•	: :	:	:
ئـــــــــــــــــــــــــــــــــــــ	<u>6.7</u>	- ':	:	:	•	•	•	•			•		:	: :	•	:
Mati	· avial	· Hend	lina	Pauin		ง ในกกไซ	Diet	(page	82)	•	•		•	: :	•	:
/	EL La			Equip	٠	·	•	· Page	•	•	•	: :	•	: :	:	:
·		<u> </u>	7		.1:	•	:	•	•	•	•		•	•	•	:
	•	•	•	• •:•:•:	·	0	. (ge 82)	•	•	•	•	•	•		•
MI			-Con	aition	ıng	System	n (ba	ge :0∠)	•	•	:	•	•		•	•
<u> </u>	TBI	·	<i>2</i> :	•	:	:	:	:	•	•	:	•	•	•	•	•
•	•	•	:		:	:	:	•	:	•	•	: :	•	• •	•	÷
	•	•	•	•	:	•	•	•		•	•	•	•	•	•	•
	•	•	•	•	:	:	•	•	:	:	:	• •	•	: :	:	•
	•		•	•	•	:	•	•	•	•	:	• •	•	• •	•	•
	:	:	:	•	•	•	•	•	•	•	:		•		•	•
5		:	:	•	Ŧ	•	•	•	٠	:	•		•		•	•
3	:	:	:	:	7	:	:			•	ī	; ;	•		•	
;	:	:	:	•	:	:	:	•	:	ī	•	: :	•		:	;
•	:	:	:	:	3	:	:	:	:	:	:	:	:	: :	•	:
;	3	:	:	:	:	:	:	:	*	•	•	: :	:	: :	•	•

FY83:	:FY85:	:FY87:	; FY8	9:	:FY91	:	:FY93	:	:FY95	:	:FY97	2	:FY99	12	: FYO
) 	<u>: :</u>		<u>:</u>	<u> </u>	:	:	:	:	<u>; </u>	1	:	<u>:</u>	;	<u>:</u>
		<u>: : : : : : : : : : : : : : : : : : : </u>	<u> </u>	<u>:</u>	1	:	<u>:</u>	<u>:</u>	<u>:</u>	2	:	:	;	:	:
,			CONVERSI			TTS	·····		_/	;	:	:	:	:	:
	/	M60A3T	rs produ	CTIO	N :	:	;	:	:	;	:	2	;	;	:
:	: :	: :	:	:	;	:	:	2	:	:	:	:	:	:	:
:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:
	Vehicle En	vironment	tal Supp	ort S	Systems	(pag	se 88)		:	:	:	2	:	;	:
6.	3a	/ :	:	:	:	2	:	:	:	;	:	:	;	:	:
,				:	2	:	:	:	:	:	:	:	?	:	:
cllect	ive Protec	tion Mate	erial (p	age 8	38)	:	:	2	:	;	:	:	;	:	:
	/:	: :	:	:	:	:	:	:	:	;	:	:	;	:	:
:			;	;	:	:	;	:	:	:	:	:	:	:	:
BC Tec	hnology (p	age 96)		:	:	:	:	;	:	:	:	:	:	:	:
	6.	2	/;	:	:	2	:	:	:	2	:	2	:	2	:
	: :	: :	2	;	:	:	:	:	:	2	:	₹	2	:	:
<u>ehicle</u>	Hardening	(Track	and Susp	ensid	on) (pa	ge 10	0)	;	:	:	:	:	:	2	:
6.3a	/ :	: :	;	:	;	2	2	2	¥	2	:	:	:	2	;
:	: :	: :	:	;	2	:	;	:	:	2	:	:	:	2	;
	dized Fire	Suppres	sion Com	poner	ntry (p	age 9	8)	:	:	:	:	?	:	:	:
6.	3a		/:	:	:	:	:	:	:	:	:	:	:	:	:
;	:	; ;	:	:	:	2	:	:	:	:	;	:	:	2	:
dvance	d Counterm	easures/	<u>Vehicle</u>	Integ	grated	Defen	ise Sy	stem	(page	86)	:	:	:	2	:
	6.3b		/:	2	2	:	:	:	:	:	:	:	2	2	:
:	2	: :	:	:	:	:	:	2	:	2	:	:	:	:	:
icrocl	imate Cond	itioning	System	(page	96)	:	:	;	:	;	:	:	2	:	2
6.3b/	6.4	_/: :	;	:	:	:	;	:	:	:	:	:	:	:	:
:	;	; ;	:	:	:	:	:	:	:	2	:	:	:	2	:
:	2 2	: :	:	2	:	;	:	2	:	:	:	:	:	:	:
:	: :	: :	:	:	2	:	:	:	:	:	:	:	;	2 .	:
:	: :	: :	:	:	:	:	:	;	:	:	:	:	2	:	1
:	:	: :	:	2	2	:	:	:	;	:	2	:	2	:	:
2	: :	: :	:	:	:	:	:	:	:	:	:	2	2	2	:
:	: :	: :	:	:	:	:	;	;	:	2	:	2	:	;	;
:	: :	: :	:	2	;	:	:	:	;	;	:	:	2	:	:
:	: :	: :	:	:	:	:	:	:	2	;	:	:		:	:
														•	

M60 PROGRAM

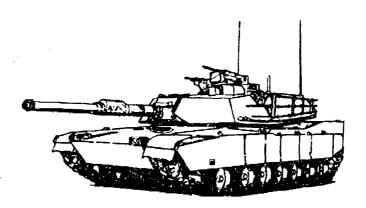
SURVIVABILITY

: FY83:	: :FY85:		: 987:	: :FY8	:	* * *****	:	:	:	: :	:	:	: :	:
1001	: 100		10/;	* * * * * * * * * * * * * * * * * * * *	•	:FY9	1:	:FY93	:	:FY95:	:FY97		:FY99:	:FY0
		 -	~ :	 -	~; ~~		-	÷				<u> </u>		
		M6(OA1 CO	NVERSI	ON TO	M60A	3 TTS			' 	•	•	• •	•
	7			PRODU			:	:		-'. :	•	•	•	•
:	 : :	:	:	:	:	:	:	:	:	: :	-	•	•	•
:	: :	:	:	:	:	:	:	:	:			:	: :	•
<u>assive</u>	<u>Counter</u>	measure	ев (ра	ge 96)	:	:	:	:	:	: :	:	:	: :	
	6.2		•	i	:	:	:	;	:	: :	:	:	: :	:
:		;	:	:	:	:	:	:	:	: :	:	:		:
	Lighting	(page	98)	:	:	:	:	:	:	: :	:	:	: :	:
6	.2 /:	:	:	:	:	:	:	:	:	: :		:	: :	:
:	: :	:	:	:	:	:	:	:	:	: :	:	:	: :	:
irect	Energy B	eam Rec	duc tío	n (pag	e 92) :	:	:	:	: :	2	:	: :	:
	6.3a	/;	:	:	:	:	:	:	:	: :	:	:	: :	:
:	• • •	:	:	:	:	:	:	:	:	: :	:	:	: :	:
rmor I	evelopme	nt and	Demo	Progra	na (þa	age 86):	:	;	: :	:	:	: :	:
	6.3a		_/:	:	:	:	:	:	:	: :	:	:	: :	:
:	: :	:	:	:	:	:	:	:	:	: :	:	:	: :	:
422 Au	tomatic	Chemica	al Ala	rm Age	nt (j	page 10)2)	:	:	: :	:	:	: :	•
6	.3b		6.4	_/:	:	:	:	:	:	: :	:	:	: :	:
:			•		:	:	:	.:	:	: :	:	:	: :	:
TINGRA	Y Comba	t Vehic	le Se	lf Pro	tect	ion (Ci	(SP)	(page	98)	: :	:	:	: :	:
6.3b	`/ii	, :	ŧ	:	:	:	:	:	:	: :	:	:	: :	:
<u> </u>	.4	/ <u>:</u>	:	:	:	:	:	:	:	: :	:	:	: :	:
•		:	:	:	:	:	:	:	:	: :	:	:	: :	:
:	: :	:	:	:	•	:	:	*	:	: :	:	:	: :	:
:		:	:	:	•	:	:	1	:	: :	:	:	: :	:
:		i .	:	:	:	:	:	:	:	: :	2 '	:	: :	:
		i	:	:	2	:	:	:	:	: :	:	:	: ;	•
•	: :	•	:	:	:	:	:	:	:	: :	:	:	: :	:
•		•		:	:	•	:	:	:	: :	:	:	: :	*
•	: :	:	:	:	:	•	:	:	:	: :	:	:	: :	:
7	: :	•	:	:	:	:	:	:	:	: :	:	:	: :	:
•	: :	•	:	:	:	:	:	:	:	: :	:	:	: :	:
1	: :		•	:	:	•	:	:	:	: :	:	:	: :	:
:	: :	:	I	:	:	:	:	:	:	: :	:	;	: :	-

M60 PROGRAM

SURVIVABILITY

: :	:	:	: :	: 1		:	:	:	:	:	:	:	;	:	:
FY83:	:FY85	:	:FY87:	: :F	Y89:	:FY9	1:	:FY9	3:	:FY95	:	:FY97:	:	FY99:	:FYO
		<u>: </u>	<u> </u>			:		<u></u>	<u>:</u>				:		
		1			<u>:</u>		<u>:</u>	<u> </u>			:	: :	:	:	:
/						O M60A	3 TTS	3		_/	Q ¶	: :	:	:	:
	/	_	M60A31	TS PRO	DUCTIO	ON:	:	:	:	:	:	: :	:	:	:
:	:	:	: :	:	:	:	:	:	:	:	:	: :	:	:	:
:	:	:	: :	:	•	:	:	:	:	:	:	: :	:	:	:
Face Ma	sk, Com	bat V	ehicle	e Crewm	an's ((page 9)	2)	:	:	:	:	: :	*	:	:
<u>/6.4/</u>	:	:	: :	: :	:	:	:	:	:	:	:	: :	:	:	:
:	:	:	: :	:	:	:	:	:	:	:	:	: :	:	:	:
T <u>echnol</u>	ogy Bas	e Eff	forts i	in Infr	ared :	Screeni	ng (j	page 1	00)	:	:	: :	:	:	:
/	6.2		7:	: :	:	:	:	:	:	:	:	: :	:	:	:
:	:	:	: :	:	:	:	:	:	:	:	:	: :	:	:	•
Technol	ogy Bas	e Eff	forts o	n Mult	i-Spec	ctral S	creer	ning (page	100)	:	: :	:	:	:
	6.2		7:	:	1	:	:	:	:	:	:	: :	:	:	:
:	:	;	: :	:	:	:	:	:	:	:	:	: :	:	:	:
Integra	ted CVC	Clot	hing S	System	(page	94)	:	:	:	:	:	:	:	2	:
:	: /	6.3	3b /	6.	4	7:	:	:	:	:	:	: :	:	:	:
:	. —	:	: :		:	'	:	•	•	•	:	: :	•	•	:
:	•	<u>•</u>	•	•	•	•	•	•	•	•	•	: :		:	:
:	:	:	:		•	•	•	<u>.</u>	•	•	•	•	•	•	•
:	•	:	•		•	•	•	•	•	•	•	•			•
:	•	:			•	•	:	•	•	•	•	•		•	•
:	•	•		•	•	•	•	•	•		•	•	:	-	÷
•	•	•			:	:	:	:	:	:	:			:	:
•		:	: ;		:	•	:	•	:	•	:	• •	•	:	•
	•	:		•	:	:	:	:	:	:	:	• •	:	:	:
•	•	•	:		:	:	:	:	÷	•	:	•	•	•	:
•	•	•	:		:	•	:	:	•	•					•
:	•	•	: :		:	:	•	:	:	•	:	•	•		•
:		•	: :	•	•	•	•	•	•	•	•	• •		•	•
•	•	•						ĭ		1		; :	:	:	
•						•	:	:	:	:	1		:	:	:
•		•			:	I	:	:	:	:	:	: :	:	:	:
:	:	I .		:	:	:	:	1	:	:	:	: :	:	:	:
7	:	:	: :	:	:	:	:	:	:	:	:	: :	:	:	:
:	:	:	: :	:	:	1	:	:	:	:	:	: :	:	:	:
:	:	:	: :	:	:	:	:	:	:	:	:	: :	•		:


M60 PROGRAM

VETRONICS

FY83:	· : FY	85:	:FY8	37:	: :FY	: 89:	· :FY	; 91:	: :FY	93:	FY95		•	: :	:FY9	9:	:FYO
:		:	:	:	:	:	:	:	:	:	;			:	:	:	:
:	;	;	;	2	;	;	;	-;	:	:		:	:	:	-;	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	2	:	:	:	:	:	:	: :	:	2	:	2	:	:
											:	:	:	:	:	:	2
M	60A1	CONVE	SION	TO M	60A3	TTS					7: :	:	ì	:	;	:	:
,	7	M	TEAD	rs pr	ODUCT	ION		:	:	:	- :	:	:	:	:	:	:
:	─;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: .
:	2	2	:	2	2	:	2	2	2	2	2	2	2	2	:	:	2
ombat	Crew	Displa	ay:	:	:	;	:	:	:	:	: ;	:	:	:	:	:	:
		7	2	:	:	:	:	:	:	:	:	:	2	2	:	:	:
:	:	:	:	:	:	:	:	2	:	:	2	:	:	:	3	;	;
:	2	2	:	:	:	2	:	3	:	1	:	:	:	:	:	:	:
;	:	:	:	:	:	:	:	:	:	:	: :	:	2	2	:	:	:
:	:	2	:	:	:	:	:	:	:	:	2	:	:	:	:	:	:
;	;	;	:	:	:	:	:	:	;	:	;	:	:	:	;	:	:
;	;	;	:	:	:	:	:	:	;	:	:	:	:	2	:	:	:
:	2	:	:	2	:	:	2	2	2	2	2 2	:	:	:	2	:	:
:	:	;	:	:	:	:	:	:	:	:	;	:	:	:	;	:	:
2	:	:	2	:	:	:	:	2	:	:	:	;	:	2	:	:	:
:	:	;	:	:	:	2	:	:	:	:	:	:	:	:	:	:	:
3	:	:	2	2	:	:	2	:	:	:	:	:	2	:	:	:	:
:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	2	:	2	2	:	:	:	3	:	;	:	:	:
:	:	:	:	:	:	:	:	2	:	:	:	:	:	:	;	:	:
:	:	:	:	·:	;	:	:	;	:	:	:	:	:	:	:	;	:
:	2	:	:	:	:	:	2	2	:	:	2	:	:	2	:	:	2
:	3	:	:	:	:	:	:	2	:	:	: ;	:		2	:	;	:
2	2	:	:	2	:	3	2	2	:	:	2	•	2	:	:	:	1
:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:
2	:	:	:	;	:	:	:	:	:	2	;	:	:	2	:	:	2
:	2	:	:	:	:	:	:	:	:	;	:	;	:	:	:	:	;
:	2	:	:	2	:	ž	:	2	:	1	2	2	2	:	2	:	3
:	•	2	•	2	•	2	•	•	<u>.</u>	,			,	,	•		2

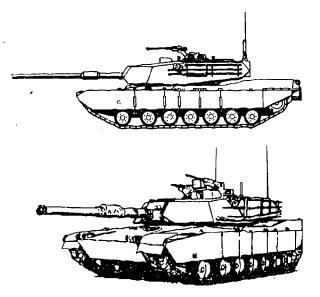
M-1 ABRAMS TANK

This new weapon system is characterized as providing significant improvements to the Army's ground combat power in the areas of armor protection, mobility, firepower and maintainability. The M-1 Tank mounts a large caliber direct fire main gun and three complimentary armament systems. Improved fire control and suspension systems, in conjunction with revolutionary armor protection and compartmentalization of fuel and ammunition, provide a vastly improved fire-on-the-move capability and allow the M-1 to survive on the battlefield while engaging targets at more varied ranges than current tanks.

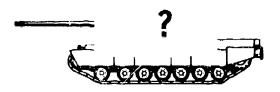
M1 ABRAMS TANK

Our present main battle tank, which has a 105MM gun and turbine engine, is highly maneuverable, hard-hitting and survivable.

M1A1 TANK


A second generation M1 with product improvements in the areas of armor, NBC Protection, 120MM gun, and weight reduction.

M1 TANK TEST BED


A full up test bed to resolve the critical issues of advanced tank configuration suitability, remote optics, automatic loading, and three-man crew.

M1A2 TANK

A third generation of the M1 Tank may evolve based on the results of the M1 Tank Test Bed Program.

FY83	: :FY85		FY87		FY89		FY91		FY93		FY95		FY97		FY99	:	:FY01
:				:													
: :			: ; : :				:	•	•		: :	∓ •	: :		: :	; :	:
:/ M1	PRODUCTIO	ON /	7:	:	:	•	:	:	:	3	•	:	:	8	:	:	:
: :			: :	:	. :	3	: :		:	;	:	:	: :	:	:	:	:
; ;			: :	:			; ;		•		•	₹ •	:		: :	: :	: :
:			· :	:		:	:	, }	:		•	•	:	:	;	:	:
: :	: :	;	: :	:	: ;	:	: :	:	: :	:	:	:	: :	:	:	:	:
: :			: :	:		:	: :		:		:	•	: :		:	:	: :
: :			: :	•	:		:		•		•	1	• •		• •	: :	•
::		3	· ·				:	3	:	•	•	:	:		:	:	:
:	PIP		MIAI	PROD	UCTIC	N		:	:	;	:	:	:	:	:	:	: :
: :			: :	:			: :	'	:		:	•	: :		:	:	:
: :			: :			: !	•	• !	•		; :	; !	: :		: !	: :	• •
	: :	•	;	:	!	3	•	;	:		:	:	:		:	:	:
: :	; ;	:	: :	:	: :	:	:	;	: :	;	:	:	: :	3	:	:	: :
: :			: :				:		:		:	:	: :			:	:
: :			• •	•		• •	• •		:		•	• •	: :		•	• •	: :
:/M1 T	EST BEDS		:		:	:	:	•	:	•	:	:	:			:	:
:	;	1	: :	:	: :	;	: :	3		;	:	:	: :	:	:	:	: :
. ;		•	: :	:	; ;	;	:	;	: :	: , ,	:	:	: :			:	: :
· ·			· ·	•	·	•	:	;	•	•		•	•	· .		• •	: :
: :	:	:	: :	:	: :	}	:	;	:	:		:	:	:	:	:	:
: :	: :	;	: :	:	; ;	3	: 1	;	: :	3	:	:	:	:	:	:	: :
•	•		•		<u>ا</u> –ر	PIP	فر سے	MIA	2 PROI	NCTI) N		•	;		:	
· ·			· ·		<i>-</i> -	_* <u>-</u> ***.	- :		- 1.01	0011	<u>-~</u> -/	:	:		•	• •	: :
: ;	: :	:	: :	:	:	:	:	•	:	!	:	:	: :		;	:	:
;		:	:	:	. 1	3	:	:	: :	: 1	:	:	: :	: ;	:	:	: :
:		;	: :	:	: :	3	: ;		:	'	:	:	: :	:	:	:	: :

 c_{31}

\$ FY83\$	\$ \$ \$FY85\$	\$ \$ \$FY87.\$; ;FY89;	\$ \$FY91	3 3 3 3FY	93;	\$ \$FY95	\$	\$ \$FY9	3 7 \$	\$ \$FY9	3 9 3	\$ \$FY(01:
3	3 3	3 3	3 3	a :	3 3	\$	3	3	3		3	3		_ 3
3	3 3	_	3 3	\$	3 3	\$	\$	\$	\$	\$	\$	\$	\$	\$
Ml PRO	D	/\$ 3	3 3	4 :	3 3	•	3	\$	4	\$	\$	\$	\$	\$
/PIP		/ MIA1 I	PRODUCTION		11_	_ 3 _		\$	\$	\$	\$	*	\$	\$
MI TES	T BEDS	_/4 +	/_PIP_		MIAZ PR	<u>oduct</u>	ION /	\$	\$	\$	\$	\$	\$	\$
\$	3 3	\$ \$	\$	\$	3 3	4	\$	\$	\$	3	\$ -	4	\$	\$
*	• •	3 3		\$:	\$ \$	4	4	ŧ.	4	\$	‡	\$	\$	\$
	et Land Na	vigation ((p a ge 10)	\$	3 3	\$	\$	\$	\$	3	\$	\$	\$	4
<u>/6.</u>	2/ 6.3a	/	\$ \$	\$	\$	\$	\$	\$	\$	\$	\$	\$	3	1
\$	\$ \$	3 3	\$ \$	\$	\$	9	\$	\$	\$	\$	\$	\$	\$	\$
	ase Noise	Crystal O	scillator (page 10) \$	\$	*	\$	\$	\$	\$	\$	\$	1
6.2	/ 6.	<u>3b</u> / 3	\$ \$	4 :	\$ \$	4	\$	\$	\$	3	•	\$	4	1
\$	\$ \$	4 2	3 3	\$:	4 4	\$	\$	\$	\$	\$	3	*	•	1
		ion and A	uthenticati	ion Devic	ce (p age	8)	\$	\$	\$	\$	3	\$	\$	1
6.3	b /s	‡ ‡	\$ \$	\$	4 4	\$	\$	3	\$	8	\$	\$	\$	
3	* *	3 3	\$ \$	\$	\$ \$	*	\$	3 .	\$	\$	\$	\$	\$	4
			ctical Powe	er Source	en (p ag e	12)	\$	\$	3	\$	3	\$	\$	1
/ 6.2	/ 6.	3b /\$	3 3	\$	3 3	\$	\$	2	ŧ	\$	\$	#	\$	4
4	; ;	\$ \$	á á	\$	3 \$	\$	\$	*	\$	\$	\$	\$	\$	1
		ommunicat:	ion System	(page 1)	6) 🛊	\$	\$	\$	\$	2	‡	4	\$	4
/6.3b/	6.41	* * *	\$ &	\$	\$ \$	4	\$	3	\$	3	≉	\$	4	1
3	3 73	\$ \$	\$ \$	\$	3 3	\$	3	\$	3	4	\$	\$	\$	4
Object	ive HF Rad		(page 12)	4	\$ \$	\$	\$	¥	\$	\$	3	₹	4	1
/ 6.2	7: <u>/</u>	6.3b		3	\$ \$	\$	\$	\$	\$	\$	ş	Ç	\$	ī
3	* * * * * * * * * * * * * * * * * * *	5 5		\$)	3	5	\$	\$	\$	4	3	\$	4
Single	Channel G	rosad and	Airborne H	Radio Sul	bayerem	(SINC	GARS) (page	14)	*	4	\$	*	4
(6.3b)			5 5	\$	\$ \$	\$	\$	\$	\$	\$	\$	\$	\$;
7	3 3	\$ \$	3 5	\$	3 3	\$	\$	1	\$	\$	\$	\$	\$	4
SOS Fr	equency Sy	nthezizer	(page 14)	\$	\$ \$	4	\$	\$	\$	\$	\$	\$	5	4
6.2	/ (.3a /	် ေန	\$ \$	4	\$	5		3	\$	\$	\$	\$	\$:
	3 \$	\$.	\$	\$ 3	2	\$	2	\$	4	\$	\$	3	4
VHSIC E	hase ? Chî	Set (pag	ge 16) #	4 .	\$ \$	3	\$	\$	3	4	\$	\$	\$	1
	15,34 7	7 3 3		3	5 4	\$	\$	\$	3	\$	\$	\$	3	;
	3 3	3 3	: :	\$	1 2	\$	\$	3	3	\$	\$	3	•	4
VHSIC	Phase 1 Ch	ip Sec (p	age 16) s	3	\$ \$	3	•	\$	\$	\$	‡	\$	\$;
6.3		4 4	1 1	4	3 3	3	3	3	4	3	3	3	•	

 $c_{3\bar{\mathbf{I}}}$

3	3 3	† †	\$ \$	-	\$ \$	*	\$ \$	3 3	\$ \$	\$
FY83\$	\$FY85\$	aFY87:	∌FY89\$	\$FY91		FY93\$		\$FY97\$	\$FY99\$	\$FY01
- 3	<u> </u>	<u> </u>			3 3		33	3 3	, , ,	
M1 PRO	3 3	7	7 7	4	, , , ,		• •	3 3	• •	7
PIP	U	/ MIAI F	RODUCTION	 -			3 5	1 1	4 4	4
MI TES	T BEDS	73 3	/ PIP	', ·	MIAZ	PRODŮCT	TION 7 :	3 4	3 3	3
3	3 3	3 5	3 3					3 3	5 5	\$
3	3 5	5 5	\$ \$	\$	\$ \$	\$	3 3	\$ \$	\$ \$	\$
Tactic.	al Power S	Supplies (1	.5 Kw TEG)	(page		\$	3 3	5 5	3 3	3
	6	5.2	6.3a/		6	.3b		(5.4	
	\$ \$		\$ \$	•	3	4	• •	\$	\$ \$	\$
		lio Appliqu	es for SIN	CGARS-V	(page	6) \$	\$ \$	3 3	3 3	3
<u> </u>	.2/ 6.3a		4 4	\$	3 3		3 3	\$ \$	3 3	4
A ==== /	a s Aim Couper	a a : Net (page	3 3	3	• •	*	3 3	\$ \$	3 3	\$
	3a / a	net (page		4	7 7	•	3 3	7 7	, ,	7
7 0.	<u> </u>	4 4	7 7	4	7 7 4 4	•	, ,	7 7	4 4	4
Module:	s for Tech	nology Ins	ertion (pa	ge 12)	• •	. 3	1 1	5 1	1 1	4
	2, 6.3a		7,	5 x	3 3	. 5	3 3	3 2	3 3	5
3	3 3	3 3		, 1	3 3	3	3 3	3 3	3 3	4
Freque	ncy Hoppin	g Antenna	Multiplexe	r (page	8) ;	4	3 3	1 1	3 3	\$
\$.3a / /		4	3 3	\$	3 3	3 3	3 3	\$
3	3 3	3 3	3 3	\$	3 3	\$	3 3	5 5	3 3	\$
		/ehicular /	intenna 'po	ge 8)	5 5		3 \$	3 3	\$	\$
/6.3b	/ \$ 3	\$ \$	3 3	\$	\$	\$	\$ •	3 3	\$ \$	1
4	\$ \$	* * *	\$ \$	\$	3 5	\$: :	5 5	\$ \$	\$
Milita	ry Compute	r Family (3	3 3		3 3	* *	3 3	
			6.2, 6.3a	6.	7.		····			
<u></u>	3 3	3 5	5 3		2 1	····		5 3		
500 120			er (page 6	•	• 7	7	3 3	7 7	3 3	
6.37	4 4	a s	(page 0	4	~ ? \$ 4	•	4 4	4 4	4 4	4
<u>~**"</u> ,	3 3	3 3	3 3	3	3 1	5	3 3	3 3	1 1	1
Flat P	anel Elect	rolumineso	ent (EL) D	isplav	- (раре	8) \$	3 3	3 3	3 5	3
				- <i>i j</i>		3	5 1	3 5	3 3	:
1	\$ 3	1 1	· ·	•		•	• •	• •	•	•

M1 PROCRAM

4 4 4									4	1 1				
:FY83: :FY85	; ;FY87;	# #FY8	9	FY91:		FY93	•	• • FY95		FY97:		FY99:	# #FY(∓ ≜10
1 1 1	1	3	1 1	: :		••••	5	3		3 :		1 1 7 , 4	4	5
3 3 5	3 4	-	1)		3	\$)	4	; ;	<u>;</u>	3	÷
:/M1 PROD	7: :		÷ ;	• •	;	;	•	\$:	• :	;	\$	÷	•
\$/PIP	/ M1A1	PRODUCT	ION		<u>.</u> _ :	: :	<u> </u>	- :	•	:	• •	3	\$	\$
:/M1 TEST BEDS	/3 3	1	PIP	T/	M1A2	PROD	CTIO	N <u> </u>	;	5	1	\$	‡	#
3 3 5	\$ \$	\$ \$	# :	4	;	3	\$	\$ ·	:	;	; ;	\$	\$	\$
\$ \$ \$, , ,	\$, , ,	: 1	; ; ;	:	\$	‡	:	• :		\$	\$	\$
:Independent Co	mander's T	hermal V	iewer (page	36)	3 :	\$	\$	•	:	• •	;	\$	\$
\$ 6.3b/ 6.4 /	* * *	•	• •			3 :	:	:	; -			\$	\$	#
\$ \$ \$, , ,	# = 1	\$				\$:	\$:	-			‡	\$	\$
:Improvement of				r and	6.4		page	39): 7				\$	\$	\$
2/ 6,2	/ 6.3	<u> </u>	6.3b	/	0.4	<u> </u>			•		, ,	•	7	7
#Corrected Traj	i i i	i P Sarila (nece 26	; ; }\		•	•	4		•	, ,	7	7	÷
3/ 6.2 /	ctory froj	ECULLE (hage re	. 4	,	•	<u>.</u>	•		• •		•	4	#
1 4 4	, , , , , ,	· •	4 1					•		• 1 • •	, 	4	4	4
Prototype 10.6	Micron Cro	sswind S	ensor i	for Ta	nka	DAGE	41e):	* :	2	•		3	4	4
$\frac{1}{6}$, $\frac{2}{6}$	1.221011 010	2	4	: :			1	4				5	£	ā
* *		\$	•			• •	- 5 :	\$:	; ;		, 3	#	:	•
\$Propulsion-Mun	tion Inter	face Tec	hnology	/Char	ge De	esign	Techi	nology	7 (pag	ge 41c	:) ;	\$	3	\$
÷/ 6,2	/ 6.	3ь 7	6.4	/ 2	;	5 T	:	5 :	, .	•		\$	\$	2
* * *	3 3	\$	3 3		;	;	:	4	• :		.	\$	\$	\$
\$CO2 Laser Rang	efinder (pa	ige 24)	\$ 3	•	:	•	:	\$:	: :	; ;	\$	\$	\$
$\frac{6.3b}{6.4}$; ;	3 3	• •	;	\$ ·	•	:	:	: :	; \$	‡	\$	\$
* * *	, ,	, \$	# 1	• •	;	3	3	• :	• :	• 1	; 5	\$	2	\$
:Weapon Station		m (page	41m) :	•	:	÷	\$	\$;	;	• •	\$	\$	2
3/ 6.		/	* *			\$;	•	:	.			‡	\$	3
: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;)		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	;	; Tame	. /1.317	; ! -1	; 	; 1) } }	;	(41.3	2
A CONTRACTOR OF THE PERSON NAMED IN CONT		6.4	7 Auv 1	Tober	LIBILLI	8/WV /	HUVAII	ced A	MOT I	rope	TEULE	(puge	410)	2
2/6.2/6.		U + 4	.' ,	, i	, ;	•	4	ġ A				3	7	î 4
#Integrated Pro	r - * * ressino Sus	tem (pag	· 38)	, ,	•	9	7 ·	•	•	•	, ,	*	•	ē
	$\frac{6.3b}{6.4}$	r g	4 4		· <u>·</u>	7 2	2	• •		• •		*	* *	4
1 1 1	1 1 4		4 4	•		• •	.	.	·	1 1		4	9	å
1 1 1		. 1	5 5) :		- 2	1	1		•		2	2	
			2		· ;	• •		- 2 :	<u>-</u>	2 :		\$	3	ż
				_		-		-			•	•	•	

\$ \$ \$ \$ \$ /M1 PROD \$ /PIP	1 1	7:	3	<u> </u>	3	, :						: :	FY99:	•	#FY01 ;
PIP			\$	4.		<u> </u>)	<u> </u>		3	*	3 3		<u> </u>	3 (
PIP				*	\$:	;	;		: :	\$	\$;	2
the same of the sa			*	*	*	<u> </u>	;	\$ · 4	;	\$	5	• •	;	٥	\$:
		/ HIA	1 PRO		OUT THE PERSON	/, 3		<u>ئے سے</u> ڈ		<u> </u>	;	ə •	;	‡	\$ -
:/MI TEST	BEDS	/ 4	\$	/P	IP	jan In a	M1A2	PRODU	CTIO	N / 4	#	* *		.	\$:
• •	\$ \$	\$	‡	5	\$: :		4 •	;		a	* 3		.	7 ;
3	\$ \$. 9. 1		- 1 D	\$ 	3	* :	, , ,, , , , , , , , , , , , , , , , ,	\$ 7 - E 114 -	; -) 		\$;	27.3	•	•
High Ener				oherr	ants/ 6.3b	roima. T.	1011	CI HIS	ga eroi	rce Pro	perrants	'page	347	_	4
6.		- L	3.8		0.30	/ 🔻 🔞	ě	7			4	7 7	•	i	
Research	a a in Physic	or oraf∆	ran sere	st Co	omno t	e i Strat Wa	e South	ຸ ຈັດ Min.v.a1	Panel	restar	Mataria?	g) (na	ge 4)	, L., Y	4
RESERTOR	6-2	9 () I W	7	LAC VO	ошроз. 4	A	.exvy. N	1	a CHC	5 3	4	4 198	5 T	14) 1	•
	4 4	7	,	3	4	.	<u>.</u>	4 1	,		7	9 4	,	.	4
Synthesis	of High	• Enerev	Expl	ក កូតស៊ីមួយ	s/Sup	T ETERA:	raetí	r c Expl	losiv	· Farmu	lations	(DESS.	41i):	3	5
J. C.	6.2		6.3a	77-6	.3L	7	. 15 m fr. v.	5 250	1	. , , , , , , ,	4	4 5	47.2.71	<u>.</u>	2
4	3 3		4		4	, 1.	5	3 1	,	 1 1	ź	4 5	,	• 1	3
Composite	Componen	ts for	Arma	ment	Coage	26)	5	2 2	;		,		ì	1	¥
$\frac{1}{6.2}$ 6.		5	3	3	\$.	Š		· }	5 4		• •		}	\$
) 3	1	\$	•	#	•	5 :	3	3 (; ;	;	4	3 2	;	3	3
Improved	105-MM AP	FSDS-T	(pag	e 36)	\$	\$:	•	2 :)	4 5	3	3 5	;	\$	\$
6.3a/	`	\$	\$	•	9	5 :	•	•)	3 3	\$	t :	;	ı	\$
3	\$	3	ş	'₩	\$	> :	.	\$ 4	:	5 \$	5	2 3	1	ŧ.	3
Consolida	red Prope			High	Veloc	ity A	ir De	teuse	Round	esaq) o	28)	\$		Ç.	ŧ
6.2	/ 6,30	6.3	b	<u> </u>	6,4	/	ŧ	3 ;	;	\$ \$	\$	\$ \$		5	\$
\$ \$	2	‡	*	\$	\$	9 ;	3	; ;	;	• •	\$	÷ ?	;	ì	5
Conversion		s for	Deple	ted U	raniu	m (pag	ge 28) ;	;	a •	3	3 3	;	•	\$
$\frac{6.2}{6.}$	3a_/÷	\$	\$	\$	\$	•	\$;	;	; ;	*	3 3	;	*	•
# #	* *	\$	\$	\$	\$	•	3	\$;	* *	‡	9 9	1	ł	*
Mini-Star		418)	*	: ,	, 5	3	•	3 1		• •	;	5 3	7	3	*
46.	3a	<u></u>	6.4	<u> </u>		. .	•	3	;	;	‡	2 . \$	•	3	•
• •	7 7	7	3	3	7	3		ə 3	,	3 5	÷	5 5	1	•	7
7		7	7	7	7	7		3 3	;	, ,	7	7 3)	3
• •	3	7	Į.	7	4	₹ :	7	₽ 7	; ;	, ,	7	7 9	1	;	7
, ,	7 7	7	4	J A	4	~ .	? 1	•	<i>?</i>	, ,	7	7 7		Ψ	4
; 7 4 4	7 7	4	7	7	7	₹		∓	,	, ;	7	7 7			⊋ :

FIREFCWER

9 FY83:	\$ \$ \$FY85\$: : :FY87:	\$ \$ \$FY89\$	5 5 5FY91;	# #FY93:	; ;FY	\$ 95±	\$ \$ \$FY97\$	\$ \$ \$FY99\$: :FY0	01
3	1 1	5 3	: 1	\$ \$	4 :		•	4 4	3 \$	3	V 4,
5	7 5	\$ \$	3 3	\$ 3	3 3		*	÷ ÷	\$ \$	\$,
MI TRO	D	7: :	3 1	3 3	3 3		‡	\$ \$	• •	\$	
/13F		/ Mlal P	RODUCTION	/ :	3 3		_ 3	9 5	3 5	\$	
MI TES	T BEDS	/: :	/ PIP		ILAZ PRODU	CTION	7	\$ \$	\$ \$	‡	
\$	3 \$	\$ \$	3 3	* *	7	3	\$	\$ \$	\$ \$	•	
2	; ;	; ;	• •	3 §	\$ 8	5	\$	\$ \$	\$ \$	7	
TO WAR !! U	r Systems (Close Comb	at-Heavy (page 22)	+ +	#	3	: :	3 3	\$	
6,27	ა.3a		3 3	3 3	\$	#	\$; ;	3 2	\$	
. 3	* *	:	3 3	3 2		4	\$: ;	\$ \$	\$	
lign De	nsity Kines	tic Energy	Penetrato	r Kateria	als (page	34) \$	\$	3 3	5 5	\$	
8.3/	6.3a	: :	3 3	\$	• •	#	\$; ;	\$ \$	\$	
1	* *	* *	* *	3 \$		*	\$	3 3	\$ \$	\$	
Vi.	ibility Tar	rget Acqui	sition for	Combat V	ehicle (p	page 22)	\$	3 3	\$ \$	\$	
, 	6.34		_/:	: :	\$	* *	\$	3 3	2 2	\$	
	\$		*	• •	3 4	*	\$	3 2	3 3	5	
	on Aim Tech		ge 41c)\$	* *	\$ 1	\$	‡	\$ \$	\$ \$	*	
	6.2	6.3a	= /	3 3	5 1		\$	• •	3 5	‡	
	3 3 3 - 1 5		3 3 5	3 3		7 7 7 // ·	# ## 25 1	,	* *	,	, ,
	echanical 7	reatment	tor improv	ed Perior	mance of	DU-3/4	Ti KE 1	Penetrato	r Alloys	(page 4	÷Τ
6.2/	0 - 3 B	3	• •	, ,	3 3	•	\$	7 7	7 7	7	
3	Andre Win		, , , , , , , , , , , , , , , , , , ,	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			2	, ,	9 9	3	
6,2	Assist Kind	gric energ	y (page 41	8) = =	4	3	Ž	7 7		7	
- 0,2	_/ : :	* *	3 3	7 7	•			7 7	4 4	7	
a 11 Maril	III Night	Ciaht (na	۵ (۵۱ م		4			3 7	7 7	7	
6,2		7 .	4 4				•		4 4	4	
4	. / 0, 3	_	4 4	• •			•		• •	•	
(mnrme	d Conventi	onel Armem	ent Svetem	(nage 36	5)	. 4	4	• •			
6.2	7	e s	4 4	1 1		. 4	4	4 1		4	
27	6.3	- 	1 1	1 1	4		4	1 1	2 1	4	
<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>	a a	1 1	2 1	. 1	1	2 3	2 4	4	
Correla	tion of Ur	anium Allo	v and Mech	anical Pr	coperties	with Ba	llisti	Perform	ance (pag	e 28)	
6.2		: 1	2 2		1 1	1 1	4	2 3	2 2	,	
	3 2	3 3	1 1	4 4	3 3	. 1	2	1 1	2 1	1	
•	• •	•	•	•	,	•	•	-	-	~	

M1_PROGRAM

* * * * * * * *	4 8	\$ \$	* *	÷ ÷	\$ \$	÷ ;
#FY83: #FY85: #FY87: #FY89:	@FY91#	\$FY93\$	\$FY95\$:FY97:	#FY99#	\$FY01\$
1 1 1 1 1 1	4 - 4	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$ \$	3 3	‡	* *		3 3
3/M1 PROD /3 3 3 4/PIP / MIAI PRODUCTION			• •	3 3	• •	3 3
;/PIP / HIAI PRODUCTION ;/MI TEST BEDS / \$ \$ / PIP	', ≟,,	TAZ PRODŪCTI	7 ·	• •	• •	7 7
7/FII IESI BEDS / 7 7 / FIF		TWY EKODOCII	.UN_ / *	<i>y y</i>	• •	• •
4 4 4 4 4 4 4 4	• •	* *	4 4	4 4	4 4	4 4
:Combat Vehicle Anti-Armor (page 26)	4 4	3 3	4 4	4 4	4 3	4 4
a/ 6.3 /	2 2	2 2	2 3	3 3	. .	3 3
3 3 3 3 3 3 3	1 1	4 4	2 2	3 3	3 3	1 1
#Solid Fuel Ramjet (page 41g) # #	3 3	3 3	3 3	3 3		2 3
2/6.2/ $2/6.2/$ 2 2 3 3	‡ ‡	3 3	3 \$	3 3	3 3	\$ \$
\$ \$/6.3/	\$ \$	* *	3 3	2 2	: :	3 3
3 3 3 3 3 4 4	\$ \$	3 5	\$ \$	• •	; ;	\$ \$
Tank Smart Munitions (page 41i) 3	\$	3 \$	3 3	3 3	3 3	\$ \$
\$ <u>/</u>	\$ \$	* +	3 \$	\$ \$	\$ \$	\$ \$
4 4 4 4 4	\$	5 \$	\$ \$	• •	\$ 5	\$
#High Velocity AT-Munitions (page 34)	\$	3 2	ŷ ŷ	\$ \$	\$	5 \$
\$ <u></u>	\$	\$ \$	3 3	4	\$	3 3
	*	\$ \$	\$ \$	\$ \$	\$ 3	\$ \$
Advanced Commander's Vehicle Sight (ACV	-1) (pa	ge 20) \$	• •	* *	* *	• •
\$ \$ \$ \frac{1}{6.3a}, \frac{6.3b}{3} \right\righ	3 3	* *	3 2	\$ \$	3 3	3 3
Multi-Sensor Target Acquisition System	(Namiwe)	(nnga 41a)	3 3	7 7	7 7	7 7
* */ 6.3a, 6.3b / ; ; *	(MIAS)	(hake ata)	7 7	1 1	7 7	, ,
4 4 4 4 4 4	4 4	• •	• •	4 4	4 4	• •
*Processing Technology of Tungsten Alloy	s (nage	41c) ±	4 4	3 3	3 3	1 1
1/6.2 / 6.3a /2 a a a	4 4	4 4	4 4	4 1	3 5	
4 4 4 4 4 4 4	1 1	3 3	1 1	3 2	3 3	2 2
Advanced Gunner's Sight (ACV-II) (page	20) \$	3 5	\$ -3	8 8	3 3	3 3
$\frac{1}{2} = \frac{1}{6.3a/6.3b} = \frac{1}{2}$	4 4	3 3		3	5 5	1 1
3 3 3 3 3 3	‡ 3	3 3		\$ \$	\$ \$	
Development of High Density Composite P	enetrat	or (page 28)	\$ 1	5 \$: :	\$ \$
$\frac{5}{6.2} / \frac{6.3a}{4} / \frac{4}{4} + \frac{4}{4}$	3 3	• •	\$	3 3	5 3	\$ \$
1 1 1 1 1 1	‡ ‡	3 3	3 3	\$	3 3	* *
3 3 3 3 3 3	* *	\$:	\$	\$	‡ ‡	‡ ‡

\$ \$FY8	3 3	\$ \$FY	85:	a ‡FY	\$ 87\$	‡ ‡FY	89‡	aFY9	; 1:	\$FY93	\$ \$	\$ \$FY95	\$	⇒ ⇒FY97	;	\$ \$FYS	993	\$ \$FY(3014
3	3	2	3	5	\$	\$	*	1	\$		- \$	\$	\$:	\$	4	\$	3
4	\$	\$	4		\$	\$	*	÷	3		**********	\$	\$	5	 -	\$	4	4	一
3/MI	PROI)		<u> 7a</u>	3		\$		\$	4	3	\$	\$	à	3	‡	•	\$	3
3/PI				/ H	ial i	RODUC		7		_\$	1	\$	\$	3	\$	\$	\$	‡	\$
\$ 7MI	TEST	BED	S	_/8	3	7_	PIP	/	MIA	PROD	CTIC	ON 7	\$	\$	\$	\$	3	*	\$
*	1	\$	4	*	3	3	*	\$	3	3	;	~; <u>~</u>	‡	\$;	‡	\$	\$	\$
ð	5	5	\$	દ	5	ā	Ş	\$	â	\$		‡	\$	÷	•	*	3	\$	\$
3 Hyda	roste	tic	Extr	usion	of Tu	ingste	n All	oys (p	age 3	4) :	9	\$	\$	•	\$	\$	\$	3	\$
\$/(5.2	/ 6	.3a /	7 \$	2	\$	4	\$	\$	2	\$	\$	4	\$	\$	\$	4	4	#
\$	\$	\$	\$	\$	2	\$	3	1	•	\$	\$	3	\$	\$	\$	3	\$	3	\$
\$	•	\$	\$	3	\$	4	4		3	\$	3	3	2	4	3	\$	\$	\$	\$
2 RAM	Hard	lenin	g of	Rangi	ng El	ectro	nics	(page	41e)	\$:	\$	\$	‡	\$	\$	‡	\$	\$	\$
¢/6.3	<u>3b/</u>	\$	\$	3	\$	3	\$	3	2	\$:	5	\$	*	3	\$	\$	\$	\$	2
\$	\$	3	4	*	3	\$	\$	\$	*	3 3	,	\$	2	3 :	3	3	3	\$	\$
\$Spec	cial	Mate	riale	for.	Long	Rod P	enetr	ators	(page	41i))	\$	\$	*	•	5	4	\$	\$
3/_(5.2		6,3	<u>k</u> /	3	4	\$	\$	\$	\$:	\$	\$	\$	5	\$	3	*	\$	3
•	3	‡	‡	*	#	\$	\$	*	‡	\$;	•	3	\$:	5	3	3	\$	\$
\$	\$	*	3	9	\$	*	\$	\$	\$	\$	3	\$	\$	*	\$	3	3	3	3
\$	\$	\$	\$	\$	2	þ	\$	3	3	3 3	ì	\$	\$	\$:	3	\$	*	\$	\$
\$	1	1	2	3	\$	\$	•	*	\$	\$	•	\$	\$	\$	3	3	\$	*	3
3	\$	3	\$	*	2	\$	\$	\$	\$	3	;	3	\$	\$:	•	\$	1	2	\$
\$	‡	*	\$	•	‡	\$	3	3	\$	\$:	•	\$	\$	3 :	\$	\$	\$	\$	\$
\$	4	\$	\$	3	2	\$	‡	\$	2	\$)	\$	\$	3	3	•	2	\$	ð
9	•	\$	*	\$	\$	\$	\$	\$	1	\$)	\$	3	3	\$	\$	3	4	\$
3	\$	\$	\$	\$	\$	\$	\$	\$	#	\$	•	\$	\$	\$	3	4	3	3	\$
9	1	*	\$	*	\$	\$	•	•	\$	\$	5	\$	\$	*	\$	\$	3	\$	\$
\$	5	\$	*	#	3	\$	3	3	\$	3 :)	*	†	4 :	•	•	\$	•	1
5	\$	3	\$	1	4	\$	\$	\$	\$	3 :	\$	\$	4	\$	\$	9	3	4	3
*	\$	\$	\$	3	9	\$	3	\$	\$	3	3	3	3	\$	3	ş	*	\$	\$
•	3	2	\$	3	\$	\$	\$	\$	‡	*	ð	9	\$	\$:	\$	\$	\$.	•	\$
3	*	\$	\$	\$	1	\$	\$	3	\$	•)	\$	\$	•	3	\$	\$	\$	\$
•	‡	•	•	1	\$	4	\$	\$	3	\$)	\$	\$	\$:	•	3	1	\$	•
•	‡	3	•	1	2	*	\$	*	*	•	•	•	1	\$ ' :	3	3	3	5	2
3	•	5	5	1	5	3	\$	\$	•	\$	3	\$	\$	3	3	\$	1	9	1
3	\$	3	•	\$	\$	\$	4	*	•	• ;	į.	\$	\$	3 :	•	\$	4	5	\$
•	3	•	3	3	9	3	5	3	\$	3	ħ	5	2	• :	3	3	*	7	•

MI PROGRAM

3 3	3 3	1	\$	\$	\$	-	\$ \$	\$	3	3	•	3	3	\$	+
\$FY83\$	\$FY85	\$FY	7 87‡	\$FY89) 5	\$FY91	\$ 5	FY93:	\$FY95	‡	\$FY97) \$F	¥99\$	\$FY() l s
3 3		1			3	3	33_	3		<u>* </u>	<u> </u>	3			
\$ 1	3 3	-	3	\$	‡	\$	\$ \$	\$	\$	†	• •	\$	\$	\$	\$
MI PRO	OD	/\$	***	3	3	1	7 7	1	\$	3	• •		\$	\$	\$
\$/PIP				RODUCT				- 1 - 1	5.7°	\$	3 1	3	\$	3	3
>7M1 TES		/3	\$	(¹	IP		MIA2	PRODUC	TION /	\$	3 1	\$	\$	7	\$
3 3	4 4	•	7	7	•	3		•	÷ .	3	• •	7	7	•	\$
3 3	3 3 1	* * *		3	7 D	?	7 1 411	- /	. (1-)	•	•	, ,	7	•	?
	ch of Hig	n Densi	rea Tu	ingsten	Penet	rator	Alrox	в (рад	(e 41g)	3	7 7	, ,	*	•	•
\$ <u>/6.2/</u>	0.3a /:	•	7	?	7	7	• •	7	•	•	7 7	•	7	7	7
3 3 	3 3		, , , , , , , , , , , , , , , , , , ,			ara) m	7 7 7:-	; , ((1)	7	•) ,	•	7	7
\$Multi-	Environme 7a a	nt Acti	ive Kr	. peekei	MAM)	roj T	est be	a (bas	(E 418)	7	7 7	7 7	7	3	3
3/ 0.2	/ • • • • • •	•	7	•	7	•	• •	7	7	7	7 7 • •	• •	3	•	7
7 7 4 dan	5) 3)11.		h 1	; (7 ~~ 20	• •	3	•	7	•	• •	7	7	7
Advance	ed LOVA I	6.2	ant le	cunoto	gy (pa	ige Zu	, ,	•	3	•	7	, ,	•	7	3
³ /					7	•		7	7	•			7	•	7
* *	, , , , , , , , , , , , , , , , , , ,	3		.		1	2 7 5- 57	2		7 14.	7 - 7)	70)	7	7
	ion and I	rotect	ron or	Tungs	en Al	TOAR	TOT KE	renet	ration A	rbbric	etions	(page	28)	•	•
\$\\\ \\ \frac{6.27}{}	0 - 3 8 / 3		3		7	3	5	7	•	7	7 7	, ,	7	•	7
7 7	9 3 -4 wr112	* *	- 70°B C	7 31	; r. 1.	, 1 O =	3 	⁷	۵ (۱۵	7	•	, ,	•	7	3
Advanc	ed MIllin		C KF 8	seeker :	tor ra	ina Co	mbat (page 4	(U) a	•	•	, ,	7	*	7
3 3/L	س جول المستحدية بمنطقة بأوجه		′ ;	7	9	•	7 7	3	•	3	•	,	7	•	7
* *		•	. 77 1		*	* .	3	~. *		•	7 7 T	, ,	7	•	7
	erformanc	e Combi	at ven	nicle 5	ation	ary P	lation	m Fire	Control	(pag	e 34)		\$	•	3
\$ <u>/6.2/</u>	6.3a	/ \$	\$	7	.	7	3 3	3	3	3	•	•	*	*	3
\$ \$	3 1	-	. ,		1 _	•	3	. .	. *	3	• _ •		, \$	4	\$
	Caliber e			Irmamen	s Tec	hnolo	gy/Fuz	e Tech	mology -	· FZ t	or Tar	ik Ammo	(pag	e 40)	\$
3/6.2/	6.3a	6.31	<u> </u>	6.4	<u>+ </u>	\$	\$ \$	\$	3	\$	3 1	\$	\$	\$	3
3 1	_ 	• •		4	4	\$	4	3	4	4	3	\$ \$	2	3	3
3Inerti	al Compor	ient Des	ve lopa	nent (A	(AADS)	(pag			3	3	<u> </u>	3			
\$/	يينت ين يشعب سيبيات		-				6	• 2	ان کا این شوروری و د کارد. برد						_/
1 1	3 (\$	\$	4	\$	4	3 5	4	\$	\$	• 1	4	•	\$	3
\$ 1	\$:	• •	\$	\$	\$	•	\$ \$	\$	\$	1	3	\$	•	\$	#
3 3	5 5	2	8	\$	3	•	3 3	\$	\$	•	• 1	3	\$	\$	\$
\$ \$	• •	5	\$	ı	\$	‡	5 5	\$	3	3	• •	5	\$	3	\$
\$ \$	\$ 1	\$	4	5	\$	\$	\$ \$	\$	\$	5	; 1	• •	3	\$	3
\$ \$	3 :	4	3	\$	1	\$	3	\$	\$	1	• •	5	\$	\$	3
\$ \$	3 3		4	3	\$	*	3 \$	\$	\$	\$	3	5	#	\$	\$

MI PROGRAM

MOB	IL	I	T	١

FY83:	: : :FY85:	: : :FY87:	: : :FY89:	: :FY91:	: :	FY93:	: : :FY95:	: : :FY97:	: :FY99:	: :FY0]
:	1 1	: :	: :	: :		•	: :	: 1		:
	····									
MI PRO	D	7: :	: :	•	: :	:	: :	: :		:
PIP		/ MIAI P	RODUCTION	7	: :	:	: :	: :	: :	:
MI TES	T BEDS	7: :	/ PIP	~~~~`, ~	MIA2	PRODUC	FION 7:	: :	: :	:
;	: :					:	<u></u>	: :	: :	:
:	: :	: :	: :	: :	: :	:	: :	: :	: :	:
Combat	Mobility F	uels (page	46) :	:	: :	:	: :	: :	: :	:
6	.1, 6.2, 6	.3 7:	: :	2	: :	:	: :	: :	: :	:
:	: :	 :	: :	: :	: :	:	: :	: :	: :	:
ank-Au	tomotive T	ech/Engine	Concepts	for Alte	rnate	Fuels	(page 56)) : :	: :	:
	6	. 2		フ: :	: :	:	: :	: :	: :	•
:	: :	: :	: :	T : ' :	: :	:	: :	: :	: :	:
ransmi	ssion Comp	onent Deve	lopment (p	age 56):			: :	<u> </u>	<u>: :</u>	<u> </u>
					6	. 3				
:	: :	: :	: :	:	: :	:	: :	:	: :	:
	nts for Co		/Non-Conve	ntional	Engine	es (pa	ge 52) :	: :	: :	:
6.	1, 6.2, 6.	3/:	: :	: :	: :	:	: :	: :	: :	:
:	: :	2 :	: :	:	: :	:	: :	: :	: :	:
/ehicle	Engine De	velopment/	Engine Con	cepts fo	or Alte	ernate	Fuels (pa	sge 58) :	: :	:
	-				6	. 3		/: :	: :	:
:	: :		: :	:	: :	:	: :	: :	: :	:
Corrosi	on Prevent	atives (pe	gc 48):	:	: :	:	: :	: :	: . :	:
<u>6.</u>	1, 6.2, 6.	<u>3</u> /:	: :	:	: ;	:	: :	: :	: :	:
:	: :		: :	:	: :	:	: :	: :	: :	:
Myance	d Air Filt	ration (pa	ge 42):	زدد سينيب					::	
		والمراجعة			·	6.2				
:	: :	: :	: : :	: :	: :	:	: :	: :	: :	:
ynthet	ic and Alt	ernate Fue	la (page 5	6):	: :		: :	: :	: :	:
6.	1, 6.2, 6.	<u>3</u> /:	: :	:	: :	:	1 1	: :	: :	•
:	: :	: :	: :	* 1	: :	:	: :	: :	: :	:
3e1f-C1	eaning Air		CAF) (page	54)	: :	*	: :	: :	: :	:
	و موجود برساد م	6.3		_/:	: :	:	: :	: :	: :	:
:	: :	: :	: :	:	: :	:	: :	: :	: :	:
:	: :	: :	: :	:	: :	:	: :	: :	: : :	:

MOBILITY

3 3			1 1	3 3	1 1	1 1	1 1		
FY83:	1FY851	*FY87*	FY89:	1FY91;	FY93:	1FY954	*FY97	FY99 1	FY01:
3 3	3 3	3 3	3 3	3 3	3 3	3 3		3 3	1 1
3 3	3 3	_3 8	1 1	3 \$	3 3	3 3	3 3	3 3	\$ 1
M1 PRO	D	73 3	1 1	3 3	3 3	3 3	3 3	3 3	\$ \$
*/PIP		/ MIAI P	range in the later of the later in the later	<u> </u>	_1_ 1_ 1_ 1		3 3	\$ \$	3 3
A/MI TES	T BEDS	// a a	/_PIP_	/ _Mi	AZ PRODUCT	ION_ / s	\$ \$	\$ \$; ;
3 3	* *	3 3	3 3	3 3	3 3	3 3	1 1	\$ \$	1 1
1 1			• •	3 3	3 \$	3 3	3 5	3 3	3 3
NBC Res			nsion (page	≥ 54) \$	3 3	3 3	3 3	3 3	3 3
\$/6.2/		/ MIA1 PRODUCTION / 3		3 \$					
3 3 47012-42	* *	* *	3	3 3	3 3	3 3	3 3	\$ \$, ,
		age 40/3	•	•	3 3	3 3	3 3	* *	
6.3	· · · · · · · · · · · · · · · · · · ·	• •	• •	• •	• •	3 3	3 3	3 3	3
ST ON COR	t I and Navi	icorian (n	nen 52).	•	•	•	* *	• •	• •
1/6.2 /	v.3a	7. (p.	age 32/3	• •	• •		• •	, ,	
3 3	1 1	a/ * *		1 1	1 1			: :	
Track R	ubber Devel	lopment (p	age 56)	1 1	3 3	3 3		, ,	, ,
3	6.2		7,	1 1	3 3	3 3	3 3	1 1	1 1
1 1	3 3	3 8	3 3		, ,			1 1	1 1
Morizon	tal Positio	on and Att	itude Subsy	stem (pag	e 50) a		5 8	1 1	3 1
3/ 6.	2 / 3	3 3	4 4	3 3	1 1	5 \$	3 3	1 1	4 4
1 1	, ,	3 3	3 3	3 3	3 3	3 3	3 3	2 3	
>Fluidic	Heading Re	/ MIA1 PRODUCTION /		1 1					
3/	6.2		3 3	3 3	3 3	3 3	3 3	3 5	1 1
1 1	\$ \$	3 3	>	3	3 3	3 3	3 '\$	\$ \$, ,
High Mo	bility Ener		ent System	(page 50)	\$ \$	3 3	3 3	3 3	3 3
3 3		6.3	/3	3 3	1 :	\$	3 5	3 5	3 3
1 1	1 1	* *	* *			3 3	3 3	3 3	3 3
Advance		e Material	g (page 42)) \$ 8	3 3		3 3	3 3	3 3
1/	6.2		_/		\$ \$		3 3	, ,	1 1
1 1 1D=i=======	•		. (0)				* *		3 3
1/ 6.4	Thermal Vi	remer (bag	E 46) 3	3 }	3 3	1 1	* *	\$ \$	1 1
1/ 0,4	/ * *	, ,	• •	* *	* *	* *	5 3		3 1
thus 1 Ch	annel (col	enun) Rual	n l	a Turbin	a Frairce	7) 121\$48 -	Tach (ness	(0)	* *
ADUAT CII	annel (Jacl	-up/ ruel	CORE TOP C	as luibli	e rugrues,	riuldic	recn (page	40) \$	
*/	U 4	/	• •	* *	* *	\$ \$	3 3	3 \$	3 \$

MOBILITY

:	: :	: :	1 1	:	:		:	:	:	:	: 2	:
FY83:	:FY85:	:FY87:	:FY89:	:FY9.	l:	:FY93:	:FY9	5:	:FY97	:	:FY99:	:FYO
:	<u>: : : : : : : : : : : : : : : : : : : </u>	: :	<u>: : : : : : : : : : : : : : : : : : : </u>	:	:	: :	:	:	:	:	<u>: :</u>	:
	: :	: :	: :	:	:	: :	:	‡	:	:	: :	:
MI PRO	D	<u>/::</u>			:	: :	:	:	:	:	: :	:
/PIP		/ Mlal	PRODUCTION		<u>:</u>	:_ 		:	:	:	: :	2
MI TES	T BEDS	<i>/</i> : :	PII	1	M1A2	PRODUC	TION /	:	:	:	: :	:
:	: :	: :	: :	:	•	: :	:	:	:	1	: :	:
:	: `:	: :	: :	:	:	: :	:	:	:	:	: :	:
	d Tactical		urces (pag	se 44)	:	: :	:	:	2	:	: :	:
6.2	/ 6.3	3b /:	: :	:	:	: :	:	:	:	:	: :	:
:	: :	: :	: :	:	:	: :	:	;	:	:	: :	:
	etention &	Control	(page 56)	:	:	: :	:	:	:	:	: :	:
/6.2/	6.3a /:	: :	: :	:	:	: :	:	:	:	:	2	:
:	: :	: :	: :	:	:	: :	:	:	:	:	: :	:
Advance	d Track & S	Suspensio	n Material	ls/Struc	tures	(page 4	4):	:	:	:	: :	:
:		6.3a		:	:	: :	:	:	:	:	: :	:
:	: :	: :	· :	:	:	: :	:	:	:	: -	: :	:
NATO/Fo	reign Traci	k Analysi	e (page 52	2):	:	: :	:	:	:	<u> </u>	: :	:
<i>[</i>		6.2										
:	; ;	: :	: :	:	:	: :	:	:	:	:	: :	:
Ml Abra	ms/M60 Trac	k Improv	ement (pag	ge 52)	:	: :	:	:	:	:	: :	:
$\sqrt{6.3a}$	7: :	: :	: :	:	1	: :	:	:	:	:	: :	:
:	- :::	: :	: :	:	:	: :	:	:	:	:	: :	:
45-65 T	on Track (page 42)	: :	:	:	: :	:	:	:	:	: :	:
6.	3a /:	: :	: :	:	:	: :	:	:	2	:	: :	:
:	: :	: :	: :	:	:	: :	:	:	:	:	: :	:
Functio	nal Fluide	(page 50):::	:	:	: :	:	:	:	:	: :	:
	6.2, 6.3	7:	: :	:	:	: :	:	:	:	:	: :	:
:	: :	: :	: :	:	:	: :	:	:	:	:	: :	:
Advance	d Turbine	engine/Ce	ramic Recu	perator	B (PAR	e 44);	:	:	:	:	: :	:
6.		<u>.</u> :	: :	•	;	: :	:	:	:	:	: :	:
 -	: :	: :	: :	:	:	: :	:	:	:	:	: :	:
Tank-Au	comotive To	chnology	/Advanced	Turbine	(Cera	mic Coa	tings)	(page	56)	:	: :	
/ 6.2/	: :	: :	: :	:	:	: :			:	:	: :	1
<u> </u>	•	: :		•	•	: :	:	:	:	:	: :	•
	ry Power U	15 W	. 1	• • • • • • • • • • • • • • • • • • • •	-	-	-	•	-	-	-	•
Auxilia	irv Power in	11 L. IJ K	LLOWALE !!	Dage 46)	•	: :	•	•	:	•	•	

SENSING	

\$	\$	\$	3	3	3	\$	\$	\$	•		,	†)	3	3	†	1	1 1
\$ F)	783	\$FY	823	\$FY8	3/\$	\$FY89	,	≱FY91		FY93		\$FY95		\$FY97	-	\$FY99		\$FY01\$
3					~				\$	3	<u></u>	3	<u></u>	3		1	}	
3/1	11 PRO	D		7,	3	5	3	9	s :	3 3	•	•		3	4	4	3	3 3
	PIP				AÎ P	RODUCT	LON	7	• •	•	, }	•	}	\$	* \$	3	3	3 3
\$7i	11 TES	T BED	S	/3	3		PIP		M1A2	PRODU	CTIO	N 7 :	ļ	4	\$	\$	•	\$ \$
÷	‡	4	ŧ	e e	4	• • • •	7	-, ·	-	5 - 3		5	}	1	\$	\$	\$	1 1
\$	\$	4	\$. 3	1	•	\$	4	\$ 4)	\$ 4)	\$	\$	\$	\$	\$ \$
3 A	ousti	<u>c</u> Seπ	sors	(page	60)	\$	3	\$.	• •	;	\$ 4)	\$	\$	\$	\$	3 3
3/_	-	_/\$	4	3	•	3	\$	\$	\$	9 1	}	\$ 1	•	4	\$	•	\$	\$
‡ . m	4	3 7 1		\$	*	S and Fr	\$ 	*	\$:	79))	3 1		3	\$	\$	\$	\$ \$
317	arget		Found 6.2	Sign	Lure	and E	UATE	nments	(pag	e /o/a	}	ə a	•	•	?	3	7	7 7
? <i>L</i>			3			~~ [/] =	4	4	₹	, ,) L	• •)	•	⊋ 4	4	4	4 4
* C1	nemica		•	ch (n	4 40e 6	6)3	4	3	4	v 1	<u> </u>	• •	<u>'</u>	3	•	1	4	3 3
3/			<u>. 2</u>			7 3	3	3	3	•	,	4	3	3	* \$	3	•	3 3
سان" خ	*	1	3	*	1		•	•	3 :		· }	•	,	3	\$	5	\$	3 3
a Al	DEV o	f Aut	omati	c Liqu	uid A	gent D	etect	or, XM	85, XI	486 (p	age	60) (,	\$	\$	•	4	4 1
	5.3/	6.4		73	•	•	â	ā	\$;	;	\$	}	\$	\$	\$	4	3 3
3	1	3	4	4	•	\$	\$	\$	\$:	• •)	4 5	}	\$	\$	\$	\$	\$ \$
3F	lat Pa	nel E	L Dis	plays	(pag	<u>e</u> ,70)	\$	4	•	• •	3	4 4)	\$	\$	\$	\$	1 1
7:						/ \$	\$	4)	• 1)	\$ 1	•	\$	\$	\$	\$	• •
\$	\$	4	. 3		*	3		, \$	• :	•)	4 4)	\$	\$	•	\$	1 1
3 Mi		ensor	Alt	Deten	Be Ac	quisit	ion (page /	4)	\$ 4	•	\$ 4)	3	•	4	•	5 5
•/_	6.2	-/ •	3	•	3	•	7	•	3		,	7 7	,	7	Э 4	*	7	* *
	7 7	d Non	-Stan	dard (a Condi	tion S	₹ • D	rs (pag	9 70).		;	2 2) 1	→	7 4	7	4	7 7
4/	6.2	75	_ J C ALI	idala .	4	4	3	a (haß	4	• •	<u>'</u>	4 4	,	4	4	•	•	• •
*,		' "	•	4	3	3	4	3	5		ĺ	3 1	, 1	•	•	3	3	3 3
5	3	3	1	3	3	3	4	i	3	• •	,)	3	3	5	\$	3 3
•	\$	3	3	4	4	•	\$	\$.	5 4	,	1 1	· }	1	•	•	4	1 1
3	•	\$	\$	3	4	\$	4	4	\$	\$ 4	•	•)	1	1	\$	1	
3	\$	\$	•	\$	\$	•	\$	\$	\$ - :	, (}	\$ 1)	1	3	\$	\$	\$ \$
1	ŧ	•	\$	\$	•	*	•	\$	\$	4 1	\$	3 :	}	\$	\$	\$	\$	\$ 5
3	\$	\$	\$	\$	•	3	\$	\$	\$:	• 1)	\$:	l	\$	\$	\$	\$	\$ \$
3	\$	*	\$	t	•	\$	1	\$	\$	• •	3	1 1	}	4	\$	*	\$	3 3
\$	\$	\$	•	*	4	•	•	7	\$;	• 1	•	1 1)	1	\$	\$	*	3 3

MI PROGRAM

\$FY83	3 3 5FY854	\$ \$	\$ 4FY8	-	- ,			4	FY95		•	•	•	•	\$ \$
5 1	3 3	### SFY85; ### ### ### ### ### ### ### ### ### #		1 1											
3	\$ 3	4 4	1	7	1 :)	3 3		1		1	,	1	1	3 3
s/Ml F	ROD	<u> </u>	3	3	5 4	;	\$ 9	1	1	:)	\$	\$	\$	\$ \$
\$/PIP		/ XIA					<u> </u>	أحدين	4	;	•	\$	\$	\$	3 5
3/M1 7	EST BEDS	_/3 =	/	PIP	. _	M1A2	PRODU	CTION	<u> </u>	, ;	•	,	5	\$	\$ \$
1 2		\$ \$	\$	\$	\$ 1	:	*	1	•		.)	\$	3	3
7 4 4 Th a and) 1 1 1 Veenen Ci	3 3	70-1	3	\$ 3)	• •	3		,	•	•	?	7	3 3
:/6.3b		gar (pag	(e /7a)	•	7 7	,	, ,	3		, ,	•		39 4	7 4	• •
3/0.30		#FY854 #FY874 #FY894 #FY914 #FY934 #FY954 #FY979 #FY999 #FY ### ### ### ### ### #FY894 #FY914 #FY934 #FY954 #FY979 #FY999 #FY ### ### ### ### #FY894 #FY914 #FY934 #FY954 #FY979 #FY999 #FY ### ### ### ### #FY894 #FY914 #FY934 #FY954 #FY979 #FY999 #FY ### ### ### ### #FY894 #FY914 #FY934 #FY954 #FY999 #FY994 #FY999 #FY994 #FY9994 #FY994 #FYP994 #FYPPP994 #FYPPPPPPPPPPPPPPPPPP			• •										
1Mulpl	•	### SFY85; #FY87; #FY89; #FY91; #FY93; #FY95; #FY97; #FY99; #FY99		 											
3/		### ### ### ### ### ### ### ### ### ##		, ,											
3 1	3 3	3 3	3	\$,	3 3	:	1		•	,	3	3	3 3
Proto	type Robotic	Sensor	System (page 7	6) :	}	, ,	4) 1)		,	\$	3	3
\$/	6,3a			/	\$ 4	,	3 3) 8	,	.	3	3	\$	3 3
\$ 7	\$ \$	• •	•	\$	5	, :	\$ \$	4	• 1	i ;	• :	,	\$	3	1 1
*Proce	ssors for Co	eron Mod	ule FLIR	gaq) 2	e 76):	; .	; ;		• •	;	• :	;	;	÷	: :
3/	/ 3	3 3	3	\$	1		\$ \$	4) :	• :)	}	3	3
3 3 •M. 1+i	-Punction Is	t t) Ja Tawaa) imitia	, ,) J) 1 ()		}	3	, ,
3,5010.2		Jer Modu	1 arge	t Acqu	Tatric	n au	n Enga	Remei	it (pa	ige /	+/ :	, .	<i>;</i>	<i>}</i>	• •
<i>*</i> /	<u> </u>	FY85; FY85; FY87; FY89; FY91; FY93; FY95; FY97; FY99; FY95; FY99; FY97; FY99; FY97; FY99; FY95; FY97;													
Might	Vision Auto	Sensor	Developm	ent (p	age 74)	•	•	, ,	1			•	3	3 3
	2, 6.3a /	***					·		-		***************************************				7 ,
1	3 3	3 3	\$	3	5 :		3 3		1)	,	3	3	3 3
Mutor		Acquisit	ion (pag	e 64)	3	}	3 3	;) 1) :	• :)	\$	\$	1 1
3/	6.3a /;	, ,	,	•	3)	3 3	;	, ,	:	3 :	,	;	1	\$ \$
-		### ### ##############################		3 3											
3 8	, , ,						_ (~ ~ ~								
Advar	nced Ground t	### ### ### ### ### ### ### ### ### ##													
Advar		FY85; \$PY87; \$FY89; \$FY91; \$FY93; \$FY97; \$FY99; \$F\$ 3) ;											
Advar	6.38 /	#FY853 #FY874 #FY899 #FY914 #FY934 #FY955 #FY977 #FY999 ### ### #### #### ##############		3 3 3 3											
Advar		### SFY855 #FY874 #FY895 #FY914 #FY934 #FY955 #FY977 #FY999 ### ### ### ### ### ### ### ### ##		3 3 3 3 3 3											
Advar		### ### ##############################			3 3 3 3 3 3 3 3										
Advar		o Ground	Target	Acquis 3 3 3 3 3	ition	Kada: 	; ; ;	E 02,			3 : : : : : : : : : : : : : : : : : : :	5 5 5	> ; ; ; ;	> > > > > >	3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-	1 1FY91:	•	FY93:		FY95:	-	FY97		FY99	•	£ 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	•) E) - 			, ,			\$ 1013 \$
3 3 3 3 3			•						· · · · · · · · · · · · · · · · · · ·	~~	<u> </u>	<u>.</u>
s/M1 PROD /s s	\$	\$	\$,) {) ;	,)	3	
PIP / MIAI PRODUCT	LON	7) <u>.</u>			1) 1) ;	,	, \$: 8
\$/MI TEST BEDS /\$ \$ / I	PIP		MIA2	PRODU	CTION	三7:) [, ;) :	•	\$	1 1
3 3 3 3 3	1	3 3	5 - :) ;	•	;) 4	. 4)	. á	.	\$ ê
	, \$	\$	•	• ;) 1) ;	1	, ;	;	•	•	\$ \$
>Vehicle Dynamics Sensor (page 79a))\$	4	•	• ;	• :) ;) 4	, ;	, :	•	\$	3 3
\$/ <u>6.2</u> /	•	3 :	\$		•	} 4		}) :	.	ŧ	}
Multi-Environment Active RF Seeker	-} ™	\$. Dad	, (76)		1				•	•	3 \$
All Laboratoria	r rægr	, pag	, hage	<i>143</i>	, ,	, ,					.	• •
\$\frac{16.2}{}	•	•					, ,		,		•	
Acquisition Subsystem (page 60)	3	3 3		, ,	,	, 1	, ,	, 1	,	,	, ,	, ,
1/	·**********	<u> </u>	6.2							·	-	` _7]
3 3 3 3 3	3	3							And Helphanes			
Quiet Radar for Air Defense (page	76)	a :	,	e :		1	,	, ;) ;		ŧ	•
3/6.2 / 6.3a /3 3	\$	3 :	• :			, 1) 1	, ;	• :	,	\$ 8
3 3 5 5 5 5	3	\$	•	• :) 4			1	, ,	• :	l .	\$ }
NCBIFF Lasers (page 74) ;	3	\$	•	• :		, ;	• 1	1) ;)	;	3
3 <u>/</u> / 3 3 3 3 3 3 3	\$	\$	\$:	• :)· 1) 1	• 4	• •) ;	• :	ž.	\$ \$
	*	•) ;		3	1	• 1	1		• :	•	, ,
Damage Assessment Concepts (page (66)	3	•		} {	•	1) ;) ;	•	.	
1/6.2/3	•	•			1				•			3 3
Dynamic Muzzle Sensing (page 68)	}	•									•	• •
1/6.2/1 1 1 1	•	4	•		, ,	, ,					•	• •
7 0 2 7 3 3 3	•	9 9				,	' 1	,	' ·) 1	
18-14 Micron IRDA (page 60)	3	- ·	1	, ,	, ,	1	•	, 1		, ·	, l	
3 3/6.2 /3 3 3	3	3	3			, ,		· •	· •	•	, 3	
8 4 8 3 3 3 3	š		•	·						,	- 5	
Driver's Thermal Viewer (page 68)	\$	3	\$	•) :) {			•		3 8
3/6.4/3 3 3 3 3	3	\$:	3 :	•	•) ;			•	. :	,	a 4
3 3 3 3 3	3		•	• 1) 4	, 4				;	,	3 2
3 5 5 5 5 5	\$	\$)) :) :	1	1	,	i :) :	•	3 3
1 1 1 1 1 1	\$	5 3	5 1			. 1	. 1	1				

MI PROGRAM

Y83	\$FY85\$	#FY87#	\$FY89	1	\$FY91:	•)FY93;		FY95\$	\$FY97		3FY99) 5	\$FYO
	<u> </u>				3	<u> </u>	<u>.</u>		<u></u>	-	3		<u> </u>	~ , ~,~
MI PPO	3		3		3	.	3	•	, ,	• •		•	3	•
FIP		WIAT	PRODUCTI	ON T		•	•	•		•	, 1	•	•	•
NI TZS	T PERC	/3 3		IP **	د رابست	Vi 17	PRODUC	ም፣ ፖኔ	7	3	, ,	3	•	•
101 100	1 1	_/ • •		<u>شَ</u> ''	به مک سو		12200			<u>.</u>		2	٠ 3	.5
5	3 3	3 2	3	3	à	9	3 3	,	3	3 :	B	5	3	3
ieital	Turret Des	nonstrati	on (page	(36 :	3	5	3 3		3	\$	•	\$	3	3
5.27	4 4	9 \$	3	3	3	3	5 3		3	\$:	5	\$	\$	3
3	5 \$	3 3	٤	\$	3	- \$	1 1	4	\$	\$	ŧ	3	\$	\$
anosec	ond Pulsers	g (page 7	4) 3	3	1 :	\$	\$ \$	1		\$	•	3	\$	*
6.	2 / 3	4 4	4	\$	1	\$	\$ \$	1	\$ \$	3	3	\$	3	3
1	1 1	\$ \$	4	\$	3	3	1 1	1	3	\$:	ļ	\$	a	\$
Il Mark	III Night	Sight (p	age 72)	\$	3	2 ,	3 4	4	3	3	\$	2	\$	\$
/6.	2/ 6.3a		. \$	\$	a :	3	3 \$	1	\$ \$	\$:	2	\$	4	3
3	3 \$		3	\$	4	t	\$	1		\$	3	\$	\$	\$
uto Tr	acker (page	e 64) 🛊	\$	\$	\$	8	5 5	4	\$ \$	\$	•	\$	\$	8
7 :	3 3	\$ \$	3	3	3	4	1 1	1	; •	.	\$	\$	\$	\$
¥		\$ \$	3	*	\$:	ř	3	1	, 1	\$.	•	3	\$	\$
	ed Traject	ory Proje	ctile (p	base 6	6)	a .	\$ \$	4	3 \$	4	*	3	*	\$
6.2	/a a	1 7	\$	\$	\$.	\$	3	- 1	\$ \$	\$	•	\$	\$	3
,	* * *		¥	8	5 1	;	3 3	1) \$.	,	3	<u>.</u>	2
	er Rangefi	nder (pag	e 00)	3	<u>بر</u>	>	7 3	3	, ,	•	•	*	à.	ð.
6.3b/6	3	3	*	*	3	}	, ,	3	, ,		}	3	*	•
	eration Fo	and Diene		a Nacidati	יים פוזיעה מידי פוזיעה	achro	3 8 100m (4	(max)	(page ?	8).	} 4	•	ক .	. 4
	.2 /4	car grane	- Wolfat	iceu x	4	e Cirro	LOBY (E	1E I /	(hage (•	•	3	•
	-	•		•	4	•	• •	Š	, ,		•		•	•
Avenae	d Commande	r'e Vehic	le Sicht	r (nea	e 60).	• 5	5 5	•	,	•	, 3	3	3	3
A STATE	t t	1/6.39	/6,3b/	7 s	4	4			, ,	•	•	•	3	5
•		14.00	3	3	•	• •	1 9	,		<u>.</u>	9	3	2	9
9	• • •	9 1	•	3	2	3	2 4	,	, ,		7 8	3	1	3
3	, ,	2 2	3	s	\$	3	3 1	1		3	S	3	5	1
3	1 1	3 3	3	2	\$	3	1 1		, ,	<u>.</u>	3	ž	1	1
,	4 4	3 1	à	1	\$	3	, ,	2	3 3	\$	3	3	3	į.
•					-	-		,	•	*	-	-		-

****	1 1	1 1	3 \$	\$ \$	1 1	\$ \$	\$ \$ 477707-	\$ \$	3
¥83	\$FY85 a	:FY87:	\$FY89\$	\$FY91;	\$FY93\$	3FY954	1FY971	1FY991	\$FY01
					<u> </u>				<u></u>
MI PROI	1 1	7.		• •	, ,	, ,	• •	• •	•
PIP			RODUCTION		7 7	• •	, ,	• •	•
MI TEST	r BVDC	/ MIAI /	PIP	/, - -	AZ PRODÚCT	รักดีที่ 7		• •	•
11 1150	1 DEPO	<i>ــا</i>							•
•				3 5	3 3	3 3	1 1	1 1	3
ratatui	ne 10.6 Mi	eron Cross	wind Senso	r (page 76) , ,	3 3	3 3	3 5	\$
5.2/:	1 1	1 1	1 1	5 5	1 1	3 3	1 1	3 3	3
٠, ١	5 5	1 1	, ,	3 3	3 3		3 3	1 1	3
mored	Combat Vel	hicle Heav	y - Night	Vision Svs	tem (page	64)	3 3		3
	6.3a /	7,	1 1	3 3	1 1	3 3	3 3	3 3	3
1	3 3	3	3 3	3 3	1 5	3 3	3 3	4 4	\$
ntegra	ted Proces	sing Syste	em (page 70) ; ;	3 3	1 1	3 3	3 3	3
6.2	/ 6.3a/6		ง ัง	\$ \$	3 3	8 3		3 3	4
1	3 3	3 3	s ŧ	\$ \$	\$ 5	3 3	3 3	3 3	\$
	Module Mul	tifunction	n Laser (pa	ge 66) 🛊	3 3	3 3	3 3	\$ \$	3
6.3a	/3 3		3 5	3 3	3 \$	3 3	3 3	3 3	\$
1	ิง ง	3 3	3 3	3 3	5 3	3 3	3 3	3 3	3
	d Radar Te			3 3	3 3	\$ \$	3 3	3 3	\$
6.2	/ 6.	3a /6	.3b/6.4/s	5 \$	\$ \$	3 3	3 3	3 3	ā
\$	\$ \$	3 3	1 1	3 3	3 2	3 3	3 3	3 3	3
ll Vis	ibil <u>ity Ta</u>	rget Acqu	isition (pa	ge 62) 🛊	\$ \$	\$ \$	3 3	3 \$	\$
*	3/		/s s	3 3	3 3	3 3	* *	1 1	\$
	\$ \$		3 3	3 3	3 3	3 3	, ,	3 \$	3
	Distance	Sensor (p	age 72) \$	ş ş	3 3	3 3	\$ \$	3 3	\$
6.2/		3 3	3 3	3 3	3 \$	3 3	3 1	3 3	*
			\$, \$	3 3	3 3	3 3			
nd Gen	eration Cr	osswind S	ensor (page	60)	3 3	* *	3 3	* *	\$
		* 17	6.2	/ 3	* *	\$ \$	\$ \$	5 1	•
3	* *	3 3	\$ \$	• •		•	* *	, ,	3
•	3	4 1	3 3	3 3	3 3	• •	3	* *	*
*	* *		3 3	3 3		3 3	, ,	3 }	3
•	* *	\$ 5		3 3	* *	,	3 3	3 3	3
3	3 \$	2 2	2 >	* *	3 2	7 7	3	, ,	3

H1 PROGRAM

183¥	3 3FY853	\$ \$ \$FY87\$	\$ \$ \$FY89\$	\$ \$ \$FY91;	1 2 1FY931	3 3 3FY953	3 3	\$ \$	4
1023	\$ # \$	\$ #18/\$ \$ \$	\$ #1893		3 1 1	\$F190\$ \$ \$	#FY97#	1FY991	\$FYO!
·····			- January a	5 3				<u> </u>	
MI PRO				3 3	4 4		4 4	• •	•
PIP			RODUCTION		9 9	1 1	3 5	• •	•
	T BEDS	/3 3	PIP	'/ - ' _mï	AZ FRODÜCT	ากีซ์ 7 s	3 3	1 1	÷
3	1 2	an' 3 3	1 1	شتانده مک سم مدر اگ		3 3	3 3	, ,	3
1	3 3	3 3	3 3	3 3		3 3			3
AM Har	dening of	Ranging El	ectronics	(page 76)	: 3	3 3	3 3	3 3	3
6.2.	6.3b/s	i i	3 3	3 3	÷ ÷	3 3	3 3	8 3	\$
\$	3 3	3 3	3 \$	3 3	3 3	: 3	3 3	3 3	\$
unable	Filters,	Optical Sy	ritches (pa	ge 79a);	3 3	3 3	3 3	\$ \$	\$
6.	2 / 2	\$ 5	\$ \$	3 3	\$ \$	\$ \$	3 3	3 3	\$
\$	\$ \$	3 2	3 3	3 4	\$ \$	3 3	3 3	3 3	ž.
ılti- <u>S</u>	ensor Tsr	et Acquisi	tion Syste	zā (MTAS) (page 74)	\$ \$	3 , 3	5 3	\$
≱	6.3e, 6.	3b /s	3 3	3 3	: 8	\$ \$	3 3	3 3	3
8	3 3	3 2	3 3	, ,	3		3 3	3 3	3
ulti-S	ensor Sign	nal Process	OTE (page	74)	3 8	3 3	3 3	3 3	3
~~	6.2	2	/ 8		3 3	\$ \$	\$	3 3	\$
\$	3 3	3 3	, ,	1 1	3 3	3 3	ð 3	3 3	\$
\$	* *	3 3	2 4	4 4	3 3	3 3	5 3	3 3	ş
	er Laser F	Pulsers (pa	ge 70) 🕽	; ;	3 3	3 3	3 3	3 3	3
6.2.	6.3a/ \$	4 4	5 \$	* *	3 4	3 3	3 3	, ,	3
ş	3 3	3 \$	3 3	5 5	2 3	3 3	3 3	, ,	3
3	\$ \$	3 3	\$ \$	8 4	3 3	3 3	\$ \$		Ł
4	3 3	3 3	3 3		3 3	3 3	\$ \$	3 3	3
3		4	3 3	3 3	•	3 3	3 3	3 3	1
*	3 3	3 3	3 3	• •	3 3	, ,		3 3	3
3	• •	3 5	3 3	3 3	3 3	3			*
3		4 4	,	• •		3 3	1 1		•
	\$ 3	3 3	3	, ,	3 3	3 3	3 3	* *	3
*	3 3	3 3	3 3	• •	3 3	* *			3
, 1	3 3	3 3	, ,	, ,	3 3	3 3	\$ 3		*
3	3 3	3 3	3 3	, ,	3 3		3 8		5
-									
3	1 1	\$ 3	4 1						•

3	1 1	1 1	; ;FY89;))FY91:	\$ \$ \$FY93\$	1 1 4FY951	\$ \$ \$FY97\$	\$ \$ \$FY99\$	FY0
¥834	3FY853	*FY87*	381033	3 1	3 3	1 1	3 3	3 3	3
								3 3	
11 PRO					3 3	1 1	1 1	5 5	3
PIP	<u> </u>	WIAT D	RODUCTION		1 1		3 3	3 3	3
TIP	T BEDS	1, 500	/ PIP	'/ ~MI	AZ PRODUC	TION 7	3 3	3 3	3
11 175	1 DEIDS	/ <u>*</u>			3	~~;~	3 3	3 3	
•			, ,	1 1	3 3	3 8	3 3	3 3	3
Lata Arr	as Neutrol	ization Do	wice (WANT) (page 79	t (a)	1 1	5 3	3 3	\$
ae Mi	ea Hedelai	6.2	VAC- 100000	6.3a	7	1 1	3 3	3 3	;
*	* *************************************			3 1	1 1	1 8	3 3	3 3	3
) W Ham	and coa	Togar Donn	ofinder Co	mmon Modul	es (page	76)1 1	5 5	a 1	\$
	dened co2	Trank rank		1 1	1 1	1 1	3 3		\$
<u>-/</u> 3	• •	• •		•		1 1	3 3	5.5	\$
)	d Multi-Se	naan Cunna	r'o Sight	(nege 62)	1 1	1 1	3 3	3 3	3
vance	d multi-se	ansor Guine	r p prime	(page 02)		3 3	1 1	1 . 1	3
3	1/ 6.38	6.3b/	• •			1 1	1 1		3
. 3	3 3	3 3	3 3 W TT\ (50	, 62\ s	• •	• 0	1 1	1 1	3
ivance	d Gunner's	Signt (A	A-Tr) (ba)	gis 04/ 4			3 4		3
3	* */_	6.3a, 6.31) / 3 · 3	• •	•	, ,	3 3	5 4	3
3	* <u>*</u>	3 3	70\-	3 3			• •	, ,	,
	zation Tec	nniques ()		~~ <u>~</u> .			4 5	3 3	
6.2	/ 6.3a	/ 6.3b	6.4		•	•			4
3	1 1	3 3	3 3		•				·
4	4 4		3 3	(10454) (70-\-	• •		4	4
122 Au		remical Age	ent Alarm	(ACADA) (pa	age /ya/a	3 3	3 <i>4</i>		
	6.2		5.4	3 3	, ,			, ,	. 4
3		3 3	3 3	3 3		• •	* *		•
*	3 3	3 3	3 5	3 3	, , ,			<i>a</i> •	a a
2	5 5	3 3	3 3	1 1	5 1	3 3	3 3	> *	•
*	3 3	3 3	3 3			1 1	3 3		•
*	3 3	3 3	1 1	, ,	3 3	3 3	3 3		<i>•</i>
*	4 4	8 1	3 3	3 \$	3 4		1 1	8 1	7
3		3 3	\$ \$	3 3	, ,	, ,	\$ \$	3 3	*
*	3 3	3 3	3 3	3 3	\$ \$	3 3	* *	3 7	•
3	3 3	3 3	3 3	3 3	3 3	3 3	5 5	3 3	\$
3	1 1	8 3	3 3	3 5	3 3	3 3	. .	3 3	1
						9 5	3 3	3 à	3

SUPPORT

\$ \$ \$FY83\$	\$ 9 \$FY85\$	\$ • Ev. 9	‡ 7.4	\$ \$	\$	\$	\$ • T0/03	3	3 3	1	*	1	1	1
451073	967029	FY8	_	1FY891	\$FY		\$FY93	-	\$FY95\$	1FY97	3	1FY99	\$	\$FY01
<u> </u>	- 3 - 3		1	1 1				<u> </u>	33		3		1	\$
)		 \$	\$	4 4	3	*	3	3	, ,	•	\$	3	3	1
MI PRO) U		 	3 3		, \$	3	•	• •	4	\$	a	1	\$
PIP			Al PK	ODUCTION		. 1	-, -, 1 -, -, -,	1	<u>, , , , , , , , , , , , , , , , , , , </u>	\$	4	\$	4	•
MI TES	ST BEDS	/3	3	PIP		M	A2 PROD	UCT 101	N_ / a	•	\$	\$:	•	\$
, ,	1 1	\$	•	3 3	3	5	3	• :	, ,	\$	\$	•	•	3
4	4 4		•	1 1	\$	*		ŧ :		\$	‡	\$	‡	•
Advance	d Main-Ta	nk Inte	gratio	on Studi	es (pag	şe 80)) s	•	3	\$	\$	\$:	\$	3
TI	3D/s	\$	\$	1 1	*	‡	‡	:	3	3	3	\$:	\$	\$ 3
; ;	• •	4	3	3 3	\$	*	•	• 1	1	*	*	\$;	3	3
NBC Dec	ontaminat	ion (pag	ge 82) \$ 1	\$	3	*	a :) 1	3	•	4	\$	\$
/	/3	\$	3	1 1	4	2	\$	1 :	3 3	\$	3	3 :	,	\$
1	3 3	\$	3	1 1	4	\$	3 :	• :) 1	•	\$	3 1		3
Power 7	ransaissi	on Fluid	is (pa	age 84)	5	4	\$	• :	3 \$	3	4	3 1	•	3
·	7,	\$	4	1 1	3	3	•	3 (3 3	\$	4	•		5
3	1 1	\$	1	3 1	1	•	\$) 4		5	3	5 1		3 :
Advance	d Prognos	tics (p	age 80) 1	1	4	4	• •	3	3	•		3	3
,		6.2	-		7,	4	\$:			3	4	4		•
$I_{}$		Ó.,	3					7		3	3	3 1		4
3 3	\$ 8	7	\$	3 3	1	3	3			•	3			4
Combat	Refueling	(page	30)	3 3	•	3	4		3	4	3	4 4		•
٠/	7, 5	1	3	3 3	4	4	4			4	4	4		4
1		•	3	5 5	4	4	4			•	4	4 4	(• •
Informa	tion Requ	irement	for	Command	& Cont	rol	(page 80	1)		4	•	4 4		4 (
6.2		3	4	3 3	4	4	4			4	•		,	•
	- 1	\$	4	1 1	•	•	4			7	•	7 4		•
Materia	l Handlin	o Rouin	ent i	Sunniv	Dietri	buti	on (neg	821		•	•	, ,	,	•
	6.2		73	4 4	4	4	.vu \pagi	- UL/1	, 7	•	*	7 7	,	•
' J	1 1		4	7 7	•	4	4	, ,	7	7	7	7 1	,	₽ :
ilai e roc l	imate Con	diriani:	· · · · · ·	etoma (no	82)	*	7 ;	, 1	•	1	•	1 1)	•
/ TI	n 7	~ * * * * * * * * * * * * * * * * * * *	as oye	seem (het)	8= 0%)	4	7			7	7	* 1)	5 ;
American A. S.		7	•	7 7	7	7)	7	• 1	• •	1	3	1 1)	3 :
, ,	3 3	•	7	7 4	•	7) 1	• •	•	1	2 1)	3 1
	7 9	7	•	7 3	1	4)) 1	• •	1	3	1 1	•	3 . 1
7	5 \$	3	2	3 3	4	3	5 1	. 4	4	4	4		ı	4 .

SURVIVABILITY

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$ FY83	3 FY85:	3 2 FY	873	\$ \$FY89	\$	\$ \$FY91	3	\$ \$FY93)	\$ \$FY95	3	\$ \$F¥97) ;	FY99	3 3	\$ \$FY01	3
3	\$		3		3	1	\$	3	3	1	3	3	3 1)		\$	\$	\$
3	3) \$ \$	9	3	\$	\$	3	\$	\$	\$	3	\$	\$	5 1)	\$	3	\$
Sombat Vehicle Environmental Support Systems (page 88) Sombat Vehicle Protection Material (page 88) Sombat Vehicle Hardening (page 96) Sombat Vehicle Hardening (Track and Suspension) (page 100) Sombat Vehicle Hardening (Track and Suspension) (page 100) Sombat Vehicle Hardening (Track and Suspension) (page 100) Sombat Vehicle Fire Suppression Componentry (page 98) Sombat Vehicle Suppr		PROD	73		3	\$	3	\$	\$	1	\$	\$	9	\$ 1)	\$	\$	1
\$ 5			<u>/ Y</u>	ilai PR				<u> </u>	.4	<u></u>	3 :	3	1	• 1)	\$	\$	3
\$\frac{6.3a}{2} \frac{1}{2} \f	\$/Ml	TEST BEDS	/a	\$	/I	IP_		_M1A2	PROD	UCTIO	N_ /	\$	\$	• •	}	\$	\$	\$
\$\frac{6.3a}{2} \frac{1}{2} \f	\$) 1	?	3	4	3	*	\$	3	3	\$	\$	\$:	• •	}	‡	2	\$
\$\frac{6.3a}{2} \frac{1}{2} \f	\$ 1			\$	\$	*	\$	3	* 00\	4	•	?	•	•	,	\$	3	\$
**Scollective Protection Material (page 88)	3 Comba	t Venicle	Enviror	mental	Suppo	ore Sy	18 Cems	(pag	e go)	?	>	ə •	?		•	3	\$	7
*** *** *** *** *** *** *** *** *** **	<u> </u>	0.3a	/ \$	•	3	3	7	•	*	₹	7	÷	•)	•	•	\$
*** *** *** *** *** *** *** *** *** **	÷ Ca11.	e e e		Antonia	ə -1 (-,	.a. 06) \ E	÷	4		a A	→	•		,	7	•	•
*NBC Technology (page 96); * * * * * * * * * * * * * * * * * * *				materi	ar (pa	rke od	"	4	a a	4	₹ ^	9 4	7	7 7) 1	7	•	3
*NBC Technology (page 96) * * * * * * * * * * * * * * * * * * *	والكناتاب السان	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO		,	7	4	4	4	4	4	₫ 4	∢ •	4	•	,	4	4	å
1	•	, ,	(nara S	16)4	4	•	4	•	4	4	4	4	4	• •	,	4	•	•
Wehicle Hardening (Track and Suspension) (page 100) 1	3/100		-	7079	• 4	3	4	5	4	7 4	3	5	4 .	v 1	<u>,</u>	4	4	4
Vehicle Hardening (Track and Suspension) (page 100)	*/	ويؤد كالم فالالبسينسطيس	_	 '	4	•	3	3	1	4	4	5	4		,	3	4	4
\$\frac{6.3a}{1}\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4Vehi	, .	•	•	Suspe	ension	.) (na	en 10	ō)	3	1	3	5		í	4	3	4
**Standardized Fire Suppression Componentry (page 98) ** * * * * * * * * * * * * * * * * *	3/		3	3	. 300p.	1	5	1	3	3	5	5	5		1	3	3	3
4/ 6.3a / 5	2	3 1	. 1	à	2	3	3	3	4	3	3	5	13 :		, 1	3	3	3
4/ 6.3a / 5	\$Stan	lardized Fi	re Supr	ressio	n Com	onent	ry (p	age 9	8)	3	\$	3	\$,	4	3	4
Advanced Countermeasures/Vehicle Integrated Defense System (page 86) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3/				7₃ '	3	\$	\$	\$	\$	\$	\$	\$:	• 1)	\$	4	\$
4/ 6.3b / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1 1	3	4		\$	3	\$	\$;	4	3	a :	, ,	,	3	3	à
4/ 6.3b / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 Adva	nced Counte	rmeasur	res/Veh	icle I	integr	ated	Defen	se Sy	s t. eu	(page	86)	\$:	, ,)	\$	*	1
#Microclimate Conditioning System (page 96) # # # # # # # # # # # # # # # # # # #	2				7:	\$	\$	ş	3	3	\$	\$	a :	3 1)	\$	\$	1
$4\sqrt{6\sqrt{3}b7}$	\$			\$	3	1	\$	\$	\$	\$	\$	5	5 :) :	•	ð	\$	3
			ondition	ning Sy	stem (page	96)	4	\$	\$	3	\$	\$:	\$ 1)	\$	\$	\$
3 1 6 4 4 5	a /6 · 3		3	\$	\$	\$	\$	*	\$	\$	5	\$	†	• 1)	3	\$	\$
	\$	<u>/ 6.4</u> /:	\$	\$	\$	\$	\$	\$	\$	\$	3	\$	†	• •)	\$	\$	\$
	\$, ,	• •	\$	3	\$	\$	\$	\$	\$	\$	\$;	• •)	\$	\$	\$
	5	\$ \$:	1	3	3	\$	\$	\$	\$	\$	1	\$	5 :	5 1)	\$	5	\$
	*	5 5 3	5	\$	•	\$	\$	\$	4	\$	1	3	3 :	• •)	\$	\$	3
	\$)	1	5	4	\$	4	\$	\$	\$	3	\$	\$	• •	;	\$	3	5
	\$	\$ \$	* *	5	1	\$	\$	3	\$	\$	•	4	* :	5 4)	\$	\$	\$
	\$	5		*	1	\$	\$	3	3	3	\$	5	;		}	•	5	3
	3	\$ 3	• •	3	•	7	a	•	7	\$	•	3	•	. 1)	3	3	\$

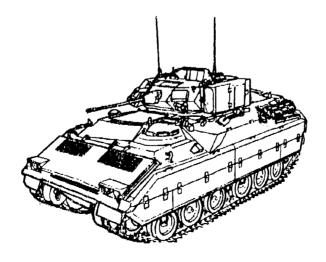
MI PROGRAM

SII	RV	V.	BI	LIT

FY83:	: :FY85:	: FX87;		: : FY89 _. :	:	FY91	:	: :FY93:	:	: :FY95	;	: :FY97		: :FY99	: :	:FYO1:
-	* 2	* * * * * * * * * * * * * * * * * * *		:	:		:	:	;	2			<u> </u>	:		: :
/HI PRO)	1:	<u> </u>		n	<u>: </u>	:	: .	2	:	:	: :	:	:	:	: :
/PIP		/ MIA	PRO	DUCTIO			<u>.</u>		<u>.</u>	: :	:	: :	:	:	:	: :
MI TES	r beds	/:	: 7	F	[P		M1A2	PRODU	CTIO	N 7 :	•	: :	:	:	:	: :
2	: :	: :	: :	:	:	:	:	:		:	:	: :	:	:	:	: :
:	: :	:	:	1	2	•	•	:	:	:	:	: :	:	:	:	: :
	Counterne	egures ((page	96)	:	:	•	:	:	:	:	2	:	:	:	: :
/ (5.2	_/	•	.	ĭ	T	:	:	:	:	:	: :	•	:	:	: :
:	: :	:	:	•	:	:	:	5	:	:	:	: :	:	:	:	: :
	Lighting (page 98))	:	å	:	:	:	:	: :	:	: :	•	2	:	: :
6	<u>.2/:</u>	:	•	:	:	•	:	:	:	:	:	: :	•	:	:	: :
	: :	* ;	:	•	:	•	:	:	:	:	:	: :	:	:	:	: :
Direct	nergy Bear	a Reduct	tion ((page	92)	:	•	:	•	:	:	: :	:	:	2	: :
	6.34	·		:	:	:	:	:	•	:	:	: :	:	:	:	: :
. :	: :		: :	:	: _	;	:	: :	:	:	:	: :	:	:	:	: :
Armor D	evelopment	and Dev	no Pr	ogram.	(bag	e 86)	: .	2	:	†	•	: :	2	:	:	: :
<u>'</u>	6.3a	/	:	:	:	•	2	:	:	:	:	: :	:	:	:	: :
	:	:		•	:	:	•	:		:	:	: :		:	:	: :
	tonatic Ch			Agen	t (pa	ge 10:	2)	•	•	: :	:	! !	:	2	:	: :
6.	3 b	7 6.4	/	:	:	:	;	:	:	:	:	: :	:	:	:	: :
:	: :		•	!	: .	•	;	:	:	4 :	:	: :	:	:	:	: :
	Combat '	Vehicle	Se l.t	Prot	ectio	v (CA	3¥) (page 9	98)	:	:	: :	:	:	:	: :
6.3	<u>/::</u>	*	;	:	:	: .	i i	:	:	:	:	: :	:	:	:	: :
6.4	· · ·	:	•	:	:	•	:	:	:	:	•	: :	:	•	:	: :
			;	•	:	:	:	:		:	:	: :	:	•	:	: :
	Vehicle Rol	botics (page	88)	:	;	:	:	•	2 :	:	: :		:	*	: :
6.	2 / :	:	:	:	ž	:	:	.	•	:	:	: :	:	:	:	: :
	: :	2 :	;			:	•	:	•	:	:	: :	;	:	:	: :
Integra	ted Counter	rocaeur	es Te	st Be	d (pa	ge 94)	:	:	:	:	: :	•	:	:	: :
:	:/	6.3	/	2	:	:	;	:	:	:	:	: :	;	:	:	: :
:	: :	:	:	:		:	:	:	:	:	:	: :	:	:	*	: :
:	:	:	:	:	e n	i	:	:	:	:	:	: :	:	:	=	: :
:	: :	:	: :	:	:	:	:	:	;	٤ :	:	: :	:	•	:	: :
:	: :	:	:	:	:	1	;	:	:	: :	:	: :	•	:	;	: :
:	: :	:	:	:	:	1	:	:		: :	:	: :	:	1	:	: :

SURVIVABILITY

:	; :	: :	777700	1	÷ ;	: 1 - TDVOF :	; ;	; ;	
:687	:FY85:	:FY87:	:FY89:	:FY91:	:FY93:	2FY95:	:FX97:	:FY99:	:FY0:
-		; :	: :	: :	: :	: :	: :	: :	:
MI PRO)D	<u> </u>			: :	: :	: :	: :	:
210		/ MIAI	PRODUCTION	<u> </u>		: ;	: :	: :	:
MI TES	T BEDS	/: :	PIF	M	1A2 PRODUCT	CION /:	: :	: :	:
:	: :		: :	: :	: :	: :	: :	: :	:
*	: :	: :	: :	: :	: :	:	: :	: :	:
uce He	ak, Comba	t Vehicle	Crewman's	page 92)	: :	: :	: :	: :	:
6.47		: :	: :	: :	: :	<u>.</u> .	: :	: :	•
E)	: :	1 1	1 1	: :	: :	: :	: :	: :	<u>.</u>
echno.	OPV BASE	Efforts in	Infrared S	Screening	(nage 160)	• •			•
	6.2	7.		• •	(paga 100)				:
-			: :	• •		: :	•		•
• • a\sm s1	a Bano	REGIONALI SIN	Multi-Spec			. 100)			•
ECHNO		ETTOTES ON	murer-spec	CLAT SCLE	ening (bage	100)			•
-	6.2	/:	: :	: :	: :	2 7	: ;	: :	:
:			• • •		: :	: :	:	: :	:
ntegra	ited CVC C	lothing Sy	stem (page	$\frac{94}{}$):	: :	*	: :	: :	:
:	: /_	6.3b /	6,4	/: :	: :	: :	: :	: :	:
:	: :	: :	: :	<u>.</u>	: :	: :	: ;	: :	ŧ
? Pen.	trator Te	chnology/P	enetration	Mechanics	(page 94)	: :	: :	: :	;
ó.	2 7.		: :	: :	: :	1 1	: :	: :	:
6.36	:	: :	1 1	: :	: :	: :	: :	: :	•
*		4 4		4 4			4 1	•	•
مال الأرادة المالية	st Bed (p	4 (80 400		: :			: :		:
	3a /:						: :	: :	:
-	<u> </u>	: :	: :	: :	: :		• •	: :	•
•									•
•									;
;	:	: :	; ;	: ;	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: ;	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	<u>.</u>	· · · · · ·	: :	: :	: :			•
•				•		• ;	; ;		•
•			- •			• •	• •	• •	•


VETRONICS

•	: :	•	:	:	;	:	:	:	:	:	:	:	:	:	:	:
FY83:	:FY85:	:FY8	17:	:FY	89:	:FY9	1:	:FY93	3:	:FY9	5:	:FY97	:	:FY	99:	:FYO
					<u>:</u>	<u> </u>	_:_	:	<u>.</u>		<u>.</u>		:	<u></u>		
جنين جي			:	:	:	4,	1	:	#	:	.2	:	:	:	:	:
HI PRO	D			•	:	<u></u> ,	. =	.\$:	:	:	:	:	:	:	:
PIP		/_M1	Al P	RODUC		/	ي ٺ	ــاب	<u>:</u> _		. :	:		:	:	:
MI TES	r BEDS	/ t	*	/	PIP		_M]	A2 PROI	<u>uct</u>	ION /	:		:	:	:	:
:		:	:	;	4	:	:	4	:	*	*	•	.1	:	:	:
:	: :		:	:	:	. :	1	:	1	:	:	:	:	:	:	:
TEPS T	echnology	(page	104)	:	2	#	:		•	.		:		:	:	:
<u>6.27:</u>	: 4	:	4	•	2	:	:	.:	:	1		#	:	:	:	:
:	1 :	*	7	:2	*	-0	:	:	7	:	:	:	*	:	:	:
dvance	d Prognom	tics (p	ege	104)	_ 1 _	_:	<u>:</u> _	:	<u>:</u> _	_:	:	*	:	:	:\$:
	:6	.2, 6.3	j							_/	:	3	•		:	:
7	: :		1	:	-;-		:		72 -	-	#	•	2	2	#	:
TEPS P	rototype	Develop	ment	(pag	e 104) :	:	:	:	•	:	:2	:	:	•	:
6.34/	: :	. .	•	:	4	•	:	4	:	:	:	'2	2	:	:	:
1	: :	:	•	:	7	3		:		1	4	:	•	•	:	:
dvance	d Diagnos	tice (p	age	104)	2	:	:	:	:	:	1	:	:	:	:	:
-	6	.2, 6.3				-				- - /	:	:	:	:	:	:
	1 1		•	•	— <u> </u>		·		`			Z	7	•	•	:
etroni	cs (page	104)	_	•		-	_ .			•	•	•		•		•
	6	.2, 6.3	}		·····				÷ /	· ·	:	:	•	•	•	•
# 72.75 W AND THE *	: :		-			·	~;~		~ <u>'</u> ~ '	- <u>-</u> -	•	4	•	•	•	•
•	•	•	•	•	•••	•	•		4	•	•		·		:	•
ombat (Crew Diag	lav (na	106	04)	4	•	•		•	•		•	•	•	•	•
/		7.		.6	•	•	•	•	•			•	•	:	•	•
dan maria		' ;	•	•	•	:		•	•	•	•	•	•	•	1.	:
:		*	•	•	:	:	•	•	•	•	*	•	:	:	•	•
	• •	•	•		:	:		•	:	•	•			:	•	:
	• •	•	•	•		•		•	•	•	•	•	•	•	•	•
			. .			•	•	•	•	•	•	•	•	•	44	•
7	i ;	ē	•	•			•	3	•	7	•		ě	¥	4	•
:7		4	•	•	•	:	•	:	*	:	:	:		:	, a	:
2	: :	•		\$	7	·\$:	:	:	*	:	:	:	.	2	1
:	: :	1	2	:	:	ě	#	:	:	•	**	:	:	:	:	:
•	: :	:	:	:	:	:	.2	:	:	:	:	*	:	:	:	:
•	• •	•	•	•	•	4						•		•	•	•

The speciment with the property of the same of the sam

BRADLEY FIGHTING VEHICLES

This vehicle system has the speed and agility to support the M-1 Abrams main battle tank. Firepower is derived from a turnet mounted, stabilized, 25mm automatic cannon, a co-axial 7.62mm machine gun and a TOW missle system. The proplusion system is a Cummins 500hp turbocharged diesel. Maximum armor protection for minimum weight through optimal use of the latest armor materials, surface obiquities, and a unique spaced laminate armor system.

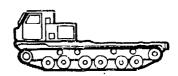
M2 (IFV)

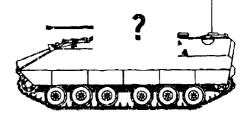
The Infantry Fighting Vehicle is designed to operate with nine men. Six small arms firing ports are provided to allow fighting on the move and under armor. The M2 carries seven TOW missiles and has additional bottom applique armor for increased mine protection.

M3 (CFV)

The Cavalary Fighting Vehicle has the same basic design as the M2 vehicle. The M3 is designed for a five man crew and can be utilized for various forward area missions.

FVS CARRIER WITH MLRS


The Fighting Vehicle System Carrier was developed as part of the Multiple Launch Rocket System which will provide a mobile long range artillery rocket for the support of our ground forces.


IFV TEST_BED

This test bed will develop mid-term options for the IFV role that are more survivable and cost effective.

Y83:	:FY85:	:FY87:		: 89:	: FY91:	: :FY	3:	:FY9	: 5:	:FY97:	: FY99:		YO1
<u></u>		<u> </u>		<u>:</u>	: :		:	*	<u>:</u>	<u>: : : : : : : : : : : : : : : : : : : </u>	:	:	
:	: :	: :	:	:	: :	÷	:	2	:	: :	: :	:	
:	: :	: :	:	:	: :	:	:	:	:	: :	: :		
*	: :	: ;	:	:	: :	:	:	:	:	: :	: :	:	
حيثت			:		: :	:	2	:	:	: :	: :	:	
PR(DUCTION				: :	:	:	:	:	: :	: :	:	
TOW :	II PIP	_/: :	:	:	: :	:	:	:	:	: :	: :	2	
BIO/	CHEM PIP	_/: :	:	:	: :	:	:	:	:	: :	: :	•	
NUCLEA	R HRD PIP	_/: :	:	2	: :	:	:	:	:	: :	: :	•	
:	: :	- : :	:	:	: :	:	:	:	:	: :	•		
:	: :	: :	:	:	: :	:	:	:	•			:	
1	: :	: :	:	:	: :	•	:	2	•			:	
:	: :	: :	:	•	: :	•	•	•	;		: :	:	
:	: :	: :	•	•	•	•	•	• •	:	: :		•	
:	: :		•	•	: :	•	:	:	:	: :	• •	•	
•			•		: :		:	•	:	•		*	
PR(DUCTION				•	:	•	•	:			•	
TOW	I PIP	7: :	***************************************			:	•	•	-	•	: :	:	
RTO/C	HEM PIP	-/:	:	•	: :	•	•	•	•			:	
M3	HATCH PIP	-/:	:	•	: :	•	•	•	•	•	: :	:	
CLEAD	HRD PIP	-/: :	•	•		•			•	: :	: :	:	
ODEAK	HAD I II	<u>-</u> / • • • • • • • • • • • • • • • • • • •	•	•		4	•	•	:	: :	: :	ŧ	
•	•	•	•	•		3	:	:	:	: :	: :	:	
•			•	•	: :	•	:	:	:	: :	: :	*	
•	•		•	:	: :	:	:	:	:	: :	: :	:	
i			•	:	: :	:	:	:	:	: :	: :	:	
:	: :	: :	:	:	: :	:	:	:	:	: :	: :	:	
		_ <u></u>	 ;	:	: :	:	:	:	:	: :	: :	:	
PH	ODUCTION			:	: :	:	:	:	:	: :	: :	:	
:	: :	: :	:	:	: :	:	:	:	:	2 2	: :	:	
:	: :	: :	:	:	: :	:	:	;	:	: :	: :	:	
:	: :	: :	:	:	: :		:	:	:	: :	: :	:	
:	: :	: :	:	:	: :	:	:	:	:	: :	: :	:	
:	: :	: :	:	:	: :	:	:	:	:	: :	4 1	•	
:	::_	: :	:	:	: :	:	:	:	:		•	•	
:	:/	7	:	:	: :	:	:	:	•	•	: :	:	
_		: :	_	-	•	•	•	-	•	• •		ě	

 C_{31}

FY83:	: :FY85:	: :FY87	:	: :FY89	;	: :FY91	: : : :	F ¥93	: :	: FY95:	: :FY97	:	: :FY99	: }:	: FY01:
	<u>: : : : : : : : : : : : : : : : : : : </u>	<u>:</u>	:	<u> </u>		<u>: </u>	<u>::</u>		<u> </u>	:-	:	<u>. </u>		:	
:	: :		:	:		:	: :		: :	:	:	:	:	:	:
	RODUCTION				/	:	: :		: :	:	:	:	:	:	:
	RRIBR PRODUC			_/	:	:	: :		: :	:	:	:	:	:	:
	MICAL PIP /	:	:	:	:	:	: ;		: :	:	:	:	:	:	:
/TOW II		:	:	:	:	:	: :	,	: :	:	:	:	:	:	:
M3 HAT		:	:	:	:	: .	: :		: :	:	:	:	:	.:	.:
NUCLEA	R HAD PIP /	:		:	:	:	: :		: :	:	.:	:	.:	,:	:
:	:/IFV TEST	BED/	:	:	:	: .	: :		: :	:	:	:	:	:	:
: :	: .:	:	:	:	:	:	: :		: :	:	:	•	:	:	:
	t Land Navig	ation	(pag	e 10)		:	: :		: :	:	:	.:	:	:	:
6,	2/6.3a	:	:	:	:	.: .	: :		: :	:	:	.:	:	:	:
:	\$.:	;	:	•	:	:	: ;		:	:	:		.:	:	: :
Low Pha	se Noise Cry	stal	Oscil	lator	(pag	e 10)	=		: :	:	;	::	:	:	:
7 62	/ 6.3b		:		:	.:	: :		: .:	:	:	:	:	:	:
	÷ :	.:	:	: .	•	:	: :		: :	:	.\$.\$:	.5	:
Handhel	d Encryption	and	Authe	ntica	tion	Devic	e (pag	e 8)	: :	*	:	:	:	:\$:
6.3	<u> </u>	.:	.:	:	:	.\$: :		: :	.2	.:	.:	:	:	:
:	: :	-:	:	:	:	" :	: .:		: :		:	.:	:	:	: :
Power S	ources/Advar	ced I	actio	al Po	wer S	ource	s (pag	e 12) :	:	:	:	:	:	:
7 6.2	/ 6,31	,/	:	: .	:	:	: :		: :	:	:	*	:	:	•
: :	: :	-	:	:	:	:	: :	:	: :	:	:	:	:	•	:
:Vehicul	ar Intercom	unice	ition	System	п (ра	ge 16) :		: :	:	:	:	:	:	:
.76.3b/	6.4	:	:	:	:	:	: :		: :	:	.:	;	:	:	•
: :		:	:	:	:	:	: ::		: :	:	:	:	:	:	:
:Objecti	ve HF Radio	(OHF)	t) (pa	ige 12)	<u></u>	: :		: :	:	.:	:	:	:	•
:/ 6.2		3Ь		' : :	:	:	: :		: :	;	;	:	:	:	:
		:	:	: .	:	:	: :		: :	:	:	:	:		:
:Single	Channel Grou	ind ac	nd Air	borne	Redi	o Sub	system	(SI	NCGARS) (page	14)	:	:	•	:
:76.35 /	: :	:	:	:	:	.:	: :		: :	• •	•	:	:	:	:
	: :	•	:	:	4	:	: :		: :	:	:	•	:	:	:
: 808 Fre	quency Synth	128126	r (Da	ige 14)	.:	: :	!	: :	:	:	:	:	:	:
	/ 6.3a /	:	:	:	:	:	. :		: :	:	:	:	:	:	•
		:	:	•	:	:	: :		:	:	:	:	:	:	
·VHSIC P	hase 2 Chip	Set (BARR	16)	•	:	:	!		•	:	:	:	•	•
· · · ·	$\sqrt{6.3a}$	*	:	:	• •	:		' !	• •	:	:	:	:	•	•
• • .	/ V.J.	•	•	•	•	•		1	• .•	•	•	•	•	•	•

c31														
: ::::::::::::::::::::::::::::::::::::	: : :FY85:	: :FY87:	: :FY89:	: :FY91	:	: :FY93	•	: FY95:		FY97:	_ 	: :FY99	 : :	:FY01:
: :	: :	: :	: :		:	:	:	:		:		:	•	:
: :	: :	: :	: :	:	:	:	:	: :		: :		:	;	: :
:/M2/3 P	RODUCTION			:	:	:	:	: :		: :	:	:	:	: :
:/FVS CA	RRIER PRODU	JCTION		:	:	:	:	: :		: :	1	:	•	: :
	EMICAL PIP	<i>7</i> : :	-: :	:	:	:	:	: :		: :	:	:	;	: :
:/TOW 11		<u> </u>	: :	2 1	:	:	:	: :		: ;	:	:	:	: :
:/M3 HAT		<u>'</u> /: :	: :	:	:	:	:	: :		: :	:	:	:	: :
:/NUCLEA	R HRD PIP /	:	: :	:	:	:	:	: :		: ;	•	:	:	: :
:	:/IFV TES		;	:	:	:	:	: :		:	:	:	:	: :
	Phase 1 Ch	ip Set (pag	e 16):	:	•	:	:	: :		: :	:	:	:	: :
:/ 6.3	<u>a</u> /	:	:	•	:	:		: :		:	3	:	:	: :
: :	.1 7 6		: :		:	:		: :		:		:	:	: :
Tactio	al Power Su	2 /	6.3a /	(page		6,3b		. ,				<u> </u>	<u> </u>	 ;
		<u> </u>	0.3a/		-	0.30		<u></u>			6.4			 -'.
· Adanti	ve VHF Radi	ia Annliana	e for SIN	CCARS—V	· (nea	6 6)	•	• •			•	•	•	
- Augici	.2/ 6.3a	7 ·		•	· \ Pag	•	•	• •		•	•	•	•	• •
: 70	: :	- ', ;	• •	:	:	•	• •	• •		: :	•	•	•	•
: Armor/	Air Covert	Net (page	6) :	:	:	:	•	• •	,	: :	•	•	• -	• •
: / 6.		: :	: :	:	:	:	•	: :		:		•	:	: :
			: :	:	:	:	:	:	:			:		: :
: Module	s for Tech	nology Inse	rtion (p	age 12)	:	:	:	:		:	}	:		: :
:/ 6,	2, 6.3a		7: : ·	•	:	:	:	: :		: :	}	: :	:	: :
: :	; ;	: :	•	:	:	: :	:	: :	;	: :		: :	;	: :
: Freque	ncy Hoppins	<u>Ante</u> nna M	<u>ultiple</u> xe	r (page	(3	:	:	: :		: :	;	: ;	;	: :
: :	/6,2/6,	3a / 6	.3b /	:	:	:	:	: :		: :	:	: :	:	: :
: :	; ;	:	:	:	:	: :	•	: :	1	: :		: :	;	: :
	ower VHF Ve	ehicular An	itenna (pa	ge 8)	:	: ;	:	: :	;	: :		: ;	}	: :
$\frac{6.3b}{}$	<u>'</u> /:::	: :	: :	:	:	:	:	: :	;	: :		: :	:	: :
: :	: :	: : /	: ;	:	:	:	:	: :	:	: :		: :	:	: :
Milita	ry Computer			<u>:</u>	<u>: </u>	<u> </u>		<u> </u>						: - ;
<u>:/</u>	·	6	.2, 6,3a		7.									
: /				6.	4 									
. 500 U.	tt VHF Powe	r Amnlifia	r (name 6	١.	•	•	,		•				,	
:/6,37:	i .	r umbilite	r (hake o	•	•	•	,	• •		• •		• •	•	
· / · · · ·	: :	• •	• •	•	:	•	•		•	• •		•	,	
: Flat P	anel Electi	columinesce	nt (EL) D	iaplav	Dage	8)	•	• •		• •		•	•	
		~ - CMI 2 11 C B C C	~~ `~~.	rj		• ,	•	• •	:	• •		•	,	: :

: Y83:	: :FY85:	: ::::::::::::::::::::::::::::::::::::	: :FY89:	1 1		: 193:	: :FY95	•	: • EVO?		: :FY99	:	. True 1
. x e > z	;;160;	:F18/:	******	:FY91:	18	193:	11193	' :	:FY97		; 1. YYY •	:	:FY01
						<u></u> -	 -	<u> </u>			<u></u>	}	
M2/3 P	RODUCTION					:	•	•	•	•	•	•	ō ¥
	RRIER PROD	DCTION	 '	• •		•	•	•	•	•	•	•	•
	EMICAL PIP		 ' :	: :	:	:	:	:	•	! !	•	•	•
TOW II		- /: :	: :	: :	:	•	:	:	:		•	:	:
M3 HAT	CH PIP		: :	: :	:	:	:	:	:	•	• •	:	:
	R HRD PIP	7: :	: :	•	:	:	:	:	:	· }	- :	:	:
:	:/LFV TE	ST BED/:	: :	: :	:	:	:	:	:	:	:	:	:
	. :	: :	: :	: :	:	:	:	:	:	;	:	:	:
:	: :	: :	: :	: :	:	:	:	:	: :	}	:	:	:
		e System ()ptimum Des	ign (pag	e 22)	:	:	:	:	!	:	:	:
1	5.2	_/: :	: :	: :	:	1	:	\$: :	: .	:	:	:
*	•	: :	: :	: :	:	:	1	:	: :	:	:	:	:
haped	Charges (p	age 41g)	: :	: :	:	:	*	:	:	;	:	:	:
	6.2		/ :	: :	:	:	1	:	:	ł	:	:	:
.	: :	: :		: :	:	:	:	:	:	:	:	:	:
			(ATAADS) (page 28)	2	:	:	:	:	:	:	:	1
6,2	6.	<u>38/:</u>	: :	: :	:	:	:	•	:	}	:	1	:
	i i 1 Campanan	t Dannalana		: :) (2	36\.	:		:	:		•	:	:
Hertia	1 Componen	ir nevelop	nent (ATAAD	5) (page	307:	<u>:</u>	,2	<u>:</u>				<u>. </u>	<u>:</u>
							<u> </u>						
GW Cor			ch in MSL a	nd WEL)	ínece .	41i)	•		•	,			•
	6.1	7.	· · ·	• •	(hage	+11)	•	•	•			•	•
•	•		• •	• •	•	•	•	•	• ·	•	• • .	•	:
inetic	Energy Pe	netratora	for Guided	Missile	s/Hype	rveloc	itv Mia	ailea	Pener	rato:	re (n	age 3	(R)
	6.34	7:	: :	: :	1	:	1	:	•	1	: :	<u>.</u>	4
	· · · · · · · · · · · · · · · · · · ·			2	:	:	:	:	:		:	:	:
:	: :	: :	: :	: :	:	:	:	:	:	:	•	:	:
•	: :	2 '3	: :	: :	:	4		:	:	}	:	:	:
:	: :	4 :	: :	: :	:	:	:	•	:	:	:	:	:
:	: :	: :	: :	: :	:	*	:	:	:	;	:	:	:
:	: :	: :	: 7	: :	:	:	1	;	:	;	:	:	:
:	: :	: :	: :	: :	:	4	:	;	:	:	:	:	:
_										,		_	_

FY83:	: :FY85:	: : :FY87:	; FY89:	: :3	: 191:	: : F	; 93:	: :FY95	; ;	FY97;	: : PY!	; 39:	FY01:
: :	: :	<u>:::</u>		* ************************************	:		<u> </u>		<u> </u>	<u>::</u>			<u></u>
		: :	: :	:	:	:	:	:	:	: :	;	:	: :
$\frac{112}{3}$ I	RODUCTION			_/ :	:	:	:	:	:	: :	:	:	: :
/PVS CA	RRIER PR	DUCTION		:	:	:	:	;	•	: :	•	:	
BIO CH	EMICAL PI	(P /: :	: :	:	:	:	:	•	:	: :	:	•	:
710W 11		<u></u> /,: :	: :	:	:	:	:	;	:	: :	:	:	
M3 HAT	CH PIP	 /:	: :	:	:		:	•	•		č	÷	
/NUCLEA	R HRD PIL				:	•	:		•		•	•	
:	:/ LFV 7	EST BED/:	: :	•		•	•	•	•		•	•	
•	: :		: :	•	ì	•	•	•	•	• •	•	•	
104 11		i i kana (1	i i	ع مناهد		410)	•	•	•	• •	•	•	
MM WAVE	6.1, 6.3	T Command	end Beemr	raer (hake	~1a/	•	•	•	: :	•	:	
	0.1, 0.3	1	': :	•	:	•	•	:	•	•	•	•	
	i i	i aiM babiu	sile (page	38)	•	•	•	:	•	•	•	•	•
KIRELI	6,		/. (Neg)		•	•	•		•	•		•	
<u> </u>			 /	•	•	•	:	•	•		:	•	
יטשפדר ו	· · · · · · · · · · · · · · · · · · ·	inrae' See	kei (page	41k):	•	•	•	:	•	: :	:	•	:
$\frac{\sqrt{6.27}}{6.27}$	6.	7.	t s	•	•	•	:		:		•	:	:
	•	ATTION OF THE PERSON OF T	: :	. :	•	:	•	•	:	:	:	:	: :
:P1:me/1	Laser Ung	ided Miss	ile Experi	ment (DAR	41c)	:	:	:	: :	:	:	:
/6.2/	: :	: :	:	:	:	:	:	:	:	: :		:	:
7.4.			: :		;	:	:	:	:	: :	:	:	: :
Precis	ion Aim T	chnique (page 41c);	: :	;	•	•	•	•	: :	•	2	: :
:/	5,2	/ 6.3	a 7:	;	;	;	:	:	:	: :	:	:	: :
			: :	: :	:	ŧ	:	:	:	: :	:	:	:
: :	: :	: :	: : :	: :	:	:	:	:	:	:	:	:	:
:	: :	: :	: : :	: :	;	•	:	:	÷	: :	:	:	:
: :	: :	: :	: :	:	;	:	:	:	:	: :	:	:	:
:	: :	: :	: :	:	:	:	:	:	:	: :	:	:	:
	; :	: :	: :	: :	:	:	:	:	:	: :	:	;	:
: :	: :	: :	: :	:	:	:	:	:	:	: :	:	:	:
	.	: :	. : :	: :	:	:	:	:	:	: :	:	:	:
:	; :	: :		: :	:	:	:	:	:	: :	:	:	:
*	: :	: :	: :	:	:	:	:	:	:	; ;	;	:	:
	• 2	: :	: : :	:	:	:	:	:	:	: :	:	•	•

FIRFPOWER

FY83:	: :FY85:	FY87:	FY89:	: :FY91:	:FY93:	:FY95:	:FY97:	: :FY99:	: :FY01
:	_ :	: :	: :	;	: :	: :	<u>:</u> :	::	:
:		: :		; ;	: :	: :	: :	: ;	:
	RODUCTION			/	: :	: :	: :	: :	:
	RRIER PROD		/ :	: :	: :	: :	: :	: :	;
	EMICAL, PIP	<u>,/</u> : :	: :	: :	: :	; ;	: :	: :	:
TOW II		_/;: :	: :	: :	: :	: :	: :	: :	:
	CH PIP	/:::	: :	: :	: :	: :	: :	: :	:
NUCLEA	R HRD PIP		: :	: ;	: :	: :	:	: ;	•
:	:/IFV TE	ST BAD/:	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	•	:	: :	:
; ;;}		. 4 . 20	(700)	(: 20)	: :	: :		: :	:
	ptics Guid	ed WIBBILE	(MOG-M)	(page 30)	: :	: :		• •	•
6.36		: :						: :	•
i Yambat	i i Vobiolo Am		ran Taaba	alaga (CVA	CT) (man 2	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		: :	•
OBDAC	6.	nament sys	7.	OLOGY (CAN	ST) (page 2	0); ;		: :	•
			-/: :						•
Small C	aliber Aut	omatic Vah	iala Kita	Control	Dago (10)	•	• •	• •	•
6.2	7 6.3		icle file	· · ·	page 418/	•		• •	•
		 ';	•	• •	• •	: :	• •		•
ow Val	ume Hyperv	elocity Mi	iasile Sva	tem (page	40):	• •	•	•	÷
		6.3b /		6.4	, , , ,			: :	•
			: :						•
integra	ited Proces	sing Syste	em (page 3)	8): :	: :	: :	: :		•
	/6.3a/6.	3b/G.47:	: :	: :	: :				:
			: :	: :	: :	: :	: :		:
6.2	: :								•
6.2	: : Signature	Motor for	Anti-tan	k (page 41	a): :	: :	: :	: :	:
6.2 inimum	: : Signature 6,2 /:	Motor for	Anti-tan	k (page 41 : :	.a): : :	: :	: :	: :	:
6.2 inimum		Hotor for	Anti-tan	k (page 41 : :	(a): : : : : : : : : : : : : : : : : : :	: :	: : : :	: :	: :
6.2 : inimum 		: :	: :	: :	a): : : : : : : : : : : : : : : : : : :	: : : :	: : : :	: :	: : :
6.2 : inimum 	6.2 7	: :	: :	: :	a): : : : : : : : : : : : : : : : : : :	: :	: : : : : :	: :	:
6.2 : inimum 	6.2 /: : : :neration o	: :	: :	: :	a): : : : : : : : : : : : : : : : : : :	: :	: :		:
6.2 : inimum 	6.2 /: : : :neration o	: :	: :	: :	a): : : : : : : : : : : : : : : : : : :				•
6.2 : inimum 	6.2 /: : : :neration o	: :	: :	: :	a): : : : : : : : : : : : : : : : : : :				***************************************
6.2 inimum	6.2 /: : : :neration o	: :	: :	: :	a): : : : : : : : : : : : : : : : : : :				***************************************

FIREPOWER

fy83:	: :FY85:	: : :FY87:	: :FY89	:	FY91:		: FY93		FY95:	:FY97	:	: FY99:	F	XO }
•		2 2	:	:		:	:		: :			:	;	
		* :		}	- C				: :	:	: :	:	9	
M2/3 P	ROLUCTION		والتناقير المشمورة بياري والمستهد	7	:	: :	:		: ;	:	: ;	:	;	
FVS CA	RRIER PROI	DUCTION	7	:	:	: :	:	;	: :	;	:	:	:	
BIO CH	EMICAL PI	P /: :	:	:	:	: :	:	;	: :	:	: :	:	•	
TOW II		/: :	:	:	:	: :	:	;	: :	;	: :	: :	:	
M3 HAT	CH PIF	<u>/:</u> ::	:	:	:	: :	;	;	: :	:	: :	:	•	
NUCLEA	R HRD PIP	<u>7:</u> :::::::::::::::::::::::::::::::::::	;	*	:	: :	:	3	:	:	: :		•	
:	:/IFV T	EST BED/:	:	:	ŧ	: :	;		: :	:			:	
:	: :	: ;	:	:	;	: :	6	3		•			•	
:	; ;	: :	:	:	:	;		061		•		i •	•	
Autonom	ous Acqui	sition Al	gorithm.	said P	roces	sors (page	24)		•			• ÷	
/ 6.	2		6.3a /	•	:	: :				•		•	•	
:	: :	: :	:	:	;	•				•	• •		•	
:	: :		3	:	:	7		•		•	•	• •	•	
Kinetic	Energy M	18811e (D	age 30)	:	ž			•	•	•	•	: :	:	
:	6.	38	/		•			•	•	•	•		:	
:		7 7	•	•	•	•	•	•	: :	:	:	:	:	
; 1 Car	it Imaging	i O madaan	e Oprione (1	.aoe 4	n)	: :	•	• •	: :	:	:	: :	:	
6.2	Thunging	, benker o	ope.one ()	, ugo 4	•	:		:	: :	:	:	: :	:	
<u> </u>			9	•	•	:	}	:	: :	:	:	: :	:	
•	• •			:	:	:	•	•	: :	:	:	: :	:	
Vary L	ong Kineti	c Energy	Penetrate	re (p	age 4	1k)	<u>;</u>	;	: :	:	:	: :	:	
6.17			: :	:	:	: :	:	:	: :	:	:	: :	:	
The same of the sa	: :	:		:	;	: :	:	:	: :	:	:	: :	:	
: :	: :	:	: :	:	:	:	:	:	: :	:	:	: :	:	
Warhead	d/Fuze Tec	hnology S	Synthesis	(page	41k)	: :		:	<u>: :</u>	:	:	<u>: :</u>		
1								6	.2					-
	2	:	; ;	:	:	:	•	:	: :	:	:	: :	:	
:	: :	‡	: :	:	:	:	:	:	: :	:	:	: :	:	
:	: :	:	: :	:	:	:	•	:	: :	:	:	: :	:	
: :	: :	:	: :	:	:	:	:	:	: :	:	:	:	:	
: :	: :	:	; ;	:	:	:	:	:	: :	:	:	:	:	
:	: :	*	: :	:	:	:	:	:	: :	ī	:		:	
: :	: :	<i>;</i>	; :	:	:	:	:	:	: :	:	;		:	
: :	: :	:	: :	:	:	:	•	:	: :	:	:		•	
: :	: :	:	: :	:	:	;	:	:	: :	:	:	: :	:	

MOBILITY

										THE PERSON		
FY83:	:FY85:	:FY87:	FY89:		Y91:	:7493	2	FY95	: :FY97	* ! •	: FY99:	: :FY01
:	: :	: :	1 :	:	:	:	:	: :	:	1	: :	:
:	: :	•	: :		:	:	:		1			*
/M2/3 PI	RODUCTION	وبراكين أب المبادرات ما وبالبدارين	n o : Smilliand Sanda and Sept of the	7:	1	:	:	: :	. 2	•	: :	:
FVS CAL	RRIER PROD	UCTION	7	:	:	:	:	: :	: :	:	: :	:
/BIO CHI	EMICAL PIP	7: :	: :	:	:	:	:	: :	: :	:	: :	:
TOW NI]/: :	: :	:	:	:	:	: :	:	1	: :	:
M3 HAT		<u>_</u> /: :	: :	: :	:	2	:	: :	: 3	:	: :	:
/NUCLEA	R HRD PIP	<u> Z : : </u> :	: :	:	:	:	:	: :	: :	:	: :	:
:	:/IFV TE	ST BED/:	: :	:	:	:	:	: :	: :	:	: :	:
:	: :	: :	: :		:	:	:	: :		2	: :	:
		Fuels (page	e 46) :	:	;	:	:	: :	:	t	: :	:
$[\underline{6.1}]$	6.2,6.3		: :	:	:	2	:	: :	å	:	: :	•
- :	: :	•	: :	: :	:	:	:	: :	:	:	: :	:
Tank-Au		ech/Engine	Concept	s for	Altern	ate Fue	la 🤄	page 56	,) :	=	: :	:
<u></u>	6.	2		:	2	:	:	: :	:	:	: :	2
_ : .	:	• _ •			:	:	:	: :		:	: :	:
Transmi	8810n Comp	onent Deve	Lopment	(page	56):		<u>.</u>		<u> </u>		: . : .	
/ 				6.3								/
i Tuhmiaa	ata for Co	nventional	/Non-Com		1 P.	i Variana (: 	591	:	:	: :	:
			/ NOII-COI	VEULTO	nai en	iganes (page -	34) =				•
البغيا	6.7, 6.3	<u> </u>				•	•	3 3		1	: :	
Vahicle.	Fraire De	velopment/i	: Proina (i Inncent	a for	Altarna	i ta Pi	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	.anc. 58)			•
• • • • • • • • • • • • • • • • • • • •	Lugine De		.3	oncept	8 101	ALCCINA	LE I	2613 (} - 1•	age Joy	:	•	•
"			3		·····		10 m 10 m	."	:	•	• •	•
Corroai	on Prevent	stives (pa	ge 48) :	•	•	•	•		•	•	•	•
	6.2,6.3		: :		:		:	: :	•	•		•
<u>'</u>		' : ' :			:	:	:	: :	•	2		•
Advance	d Air Filt	ration (pa	ge 42)	:	;	:	:	: :		•		•
1					6. 2.	·	-					7
·	: :	::::	: :		:	<u> </u>	:	: :	4	*		***************************************
:		arneta Bue	la (page	56):	:	:	:	: :	:	:	: :	:
: Synthet:	ic and Alto	SILIALE FUE								_		
	ic and Alto 6.2, 6.3	:	: :	:	:	:	:	: :		•	: :	:
:	6.2, 6.3		: :	:	:	:	: :	: :	:	:	: :	:
:	6.2, 6.3	Filter (S	: :	: : :ge 54)	:	: :	: :	: :	:		: :	: :

Mobility

:			:FY89:	:FY91:	:FY93:	:FY95:	:FY97:	:FY99:	:FY01
	***************************************	-1							
	RODUCTION							• •	:
	RRIER PRODU	ICTION		• •	•	: :	•		•
	MICAL PIP	/: :		• •	: :	: :	: :	: :	•
TOW II	and her consideration than the same and	- '/: :	: :	: :	: :	: :	: :	: :	1
M3 HAT		/: :	: :	: :	: :	: :	: :	: :	:
	R HRD PIP /	7 : :	: :	: :	: :	: :	: :	: :	:
**************************************	:/IFV TES	ST BFD/:	: :	2 2	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
CONTRACTOR OF STREET	istant Trac	ik & Susper	nsion (pag	(e 54) :	: :	1 1	1 1	7 1	2
6.21	6.1	3a_		: ;	: :	: :	: :	: :	:
:	_:	1 1	:	: :	: :	: :	: :	: :	:
	Damper (pe	age 48):	; :	: :	: :	: :	: :	: :	:
6.3	<u>a</u>		1 :	: :	: :	: :	: :	: :	:
	r Tamal Name	i Sanahis na 1-	#2\.	: :	: :	: :	• •		:
	t Land Navi	rkacron (b	age 52):						•
6.2/	6.3a	-J: :							•
rack D	ubber Devel	i laymant (n	ace 56).		•	• •		: :	•
LUCK N	6.2.	to mene (p	386 307	• •		: :	•	: :	:
			 ′:			• •	: :		:
erizou'	tal Positio		itude Subs	vetem (pag	e 50) :	: :	: :	: :	:
6.		; :	: :	: :	: :	: :	: :	: :	:
:	***	: :		: :	: :	: :	: :	: :	:
luidíc	Heading Re	eference (page 48)	: :	: :	: :	: :	: :	:
	ó. 7.	_/: :	: :	: :	: :	: :	: :	: :	:
:		- : :	<i>t</i> :	: :	: :	: :	: :	: :	:
igh Mol	bility Ener	rgy Effici	ent System	ı (page 50)	: :	: :	: :	• :	:
:	:/	6.36.		: :	: :	:	: :	: :	:
:	:	1, 2	:	. :	: :	: :	: :	: :	:
dvance	d Composite	e Material	e ipage 42	!): :	: :	: :	: :	: :	‡
	6.2	HE I NOT BY PARKETAGEN	/i :	2 2	: ;	: :	: :	: :	:
	\$ £		; ;		; ;	.	4	. .	:
rivers	The cmal Vi	remet thus	e 48) :	. ,	: :	: :	: :	: 1	1

MOBILITY

. 124 0 2 .	. PV05	. Fy 0.7	: :	1	, p v^.	:	: :	: :	. 1770.0	: :
:FY83:	: (674:	PIP /: IRD PIP /: //IFV TEST BED/: Factical Power Sources (page 44) 6.3b Faction & Coutrol (page 56) Fack & Suspension Materials/Structures (page 44) Frack & Suspension Materials/Structures (page 44) Frack Analysis (page 52) 6.2 /M60 Track Improvement (page 52)								
<u> </u>		- <u></u>				u į		<u></u>		
(N2/3 B	MATTAILTON					•			1 1	
· /FIZ/ S CA	DRIFE PROD	UCTION	SED): ser Sources (page 44) itrol (page 56) penaion Materials/Structures (page 44) 6.3a inalysis (page 52) 6.2 improvement (page 52) cal Transmission (page 48)							
*/B10 CH	RMICAL PIP	7,		•	•	•		• •	•	9 2
:/TOW II		'/."	: :	•		•	• •	: :		: :
:/H3 HAT		- /:		:		•	: :			
	R HED PIP	7::	: :	1	:	:	: :	: :	: :	: :
: :			: :	:	: :	:	: :	: :	: :	: :
: :	: :	* *	: :	: :	: :	:	: :	: :	: :	: :
: :	: :	: :	: :	2	:	:	: :	2 2	: :	: :
			rces (page	44)	: :	:	: :	: :	: :	: :
: 6.2	/ 6.	3b /	: :	:	: :	ŧ	: :	: :	: :	: :
: :	: :	: :	: :	: :	: :	:	: :	: :	: :	: :
		Control (page 56)	: :	: :	•	: :	: :	: :	: :
:/6.2/	6.3a /:	: :	: :	1	:	:	: :	: :	: :	: :
: :	: :	: :	1 . 1		: :	:	: :	.	: :	: :
: Advance	d Track &	Suspension	Materials	/Structi	res (pag	e 44)) : :	: :	: :	: :
: :	:/	6.3a		:	: :	:	:	: :	: :	: :
: :	: :	1 1	: :	:	: :	:	: :	: :	: :	: :
: NATO/Fo	reign Trac	<u>k Analysis</u>	(page 52)			***************************************				 :
:/		-			6.2					/;
: :		: :	• • •	: ;	;	:	: :	: :	: :	: :
:Ml Abre	ms/M60 Tra	ck improve	ment (page	52)	:	:	: :	: :	; :	: :
: 6.3	<u>.</u> /: :	: :	: :	:	:	:	: :	: :	: :	:
1		: :	• • •	,	: :	•	: :		: :	: :
	Hydromech	anical Tra	nsi18810n	(page 4)	3) :	:	•	2 :	• •	: :
:/6.3/	: :	:	: :			•	:	: :	: :	: :
	1 1		. 50)	\$:	: :		1 1	
		Hatch (hag	,e 30) :			•	: :	: :	: :	: :
<u></u>	3						: :		: :	: :
: :	: :	: :		4			: :	ē :	: :	; ;
• •	: :			•				* *		: :
			• •	•		•				
• :	: :			ě						
ā ;	: :									
	; ;		i i	•	≜ ā	ă	. i	• "	; ;	: :

: : : : : : :	: :	:		: :	•	:	: :		
:FY83: :FY85: :FY87:	:FY89:	:FY91	: :FY93	: :	FY95:	:FY97	: :]	FY99:	:FY01:
: : : : : :	: :	:	: :	: :	2	1	: :	:	1 1
* * * * *	: :	4	* *		:	* *	: :	* *	: :
:/M2/3 PRODUCTION	7	2	: :	: :	•	:	: :	:	: :
:/FVS CARRIER PRODUCTION	_/ :	:	: :	: :	:	:	: :	:	: ;
:/BIO CHEMICAL PIP /: :	· :	:	: :	: :	:	:	: :	:	: :
:/TOW II PIP /: :	: :	:	: :	: :	:	:	: :	:	: :
:/M3 HATCH PIF /: :	: :	:	: :	: :	:	:	: :	:	: :
:/NUCLEAR HRD PIP / : :	: :	2	: :	: :	:	:	: :	:	:
: :/IFV TEST BED/:	: :	•	: :	: :	:	:	: :	:	: :
: : : : :	: :	:	: :	: . :	:	:	: :	:	: :
	1 1	:	: :	: :	:	:	: :	:	: :
:Thermal Weapon Sight (page 79	(a)	:	: :	: :	:	:	: :	:	: :
$\frac{.6.3}{6.4}$	• •	:	: :	: :	:	:	: :	:	: :
	: :		: :	:	:	:	: :	:	:
:Mulpli Line UV-FIR Tunable La	asers (pag	e 72)	: :	: :	:	:	: :	:	: :
:/ 6.2	: :	•	: :	: :	:	:	: :	:	: :
		; ;;;;		:	:	:	: :	:	; :
:Prototype Robotic Sensor Syst	em (page	/0) ; 7.		: :	:	•	: :	:	2
2/ 28		/ :	· .	: :	:	:	:	:	: :
Processors for Common Module	77 TDC (no.	- 76\			:	•	: :	:	* ;
LIRCESSOIS IVI COMMON MODULE	turys (ba)	ge /b/:				1	• •	:	: :
Address of the second of the s		•							: :
Multi-Tunction Laser Module 7	erout doe	.ioiti	on and Pna	,	: t (page	74)		•	• •
6.2	r. sec neg		on and ting	* • •	t (page	•		•	
* * * * * * * * *		•	•		:	•	• •	•	
Night Vision Auto Sensor Deve	lumment (nsee 7	i) :	• •	•	• ri	• •	•	
6.2	· ·		6.	<u> </u>			******		
				: :		-			· · · · · · ·
:Automatus Target Acquisition	(page 64)	ż			•		•	•	: :
:/ 6.3a/: : :	: :	•	•		•	•	•	;	: :
Advantage of the second	; ;	:		: :	:	•	: :	•	: :
: Advanced Ground to Ground Tax	get Acqui	oition	Radar (pa	ze 62)	:	:	- , ! !	:	:
*	/: : :	:	:	1	:	:	: :	:	: :
:/ 6.3a / : :	:	:	· ·	: :	:	<u>-</u>	: :	:	,
						_			•

### ### ##############################	ER PRODU CAL PIP P P PIP RD PIP / /IFV TES : ensors (/: /: /: T_BED/	7	Y89:	:FY	:	:FY9:		: FY95:	:F197	***************************************	:FY99:	: FY
FVS CARRI BIO CHEMI TOW II PI M3 HA7CH NUCLEAR H	ER PRODU CAL PIP P P PIP RD PIP / /IFV TES : ensors (/: /: /: T_BED/	: :		3 : : : : : : :					:	•• •• •• •• ••		:
FVS CARRI BIO CHEMI TOW II PI M3 HA7CH NUCLEAR H	ER PRODU CAL PIP P P PIP RD PIP / /IFV TES : ensors (/: /: /: T_BED/	: :	::		** ** ** ** ** ** **	•	: : : : : : : : : : : : : : : : : : : :			***************************************		: :
FVS CARRI BIO CHEMI TOW II PI M3 HA7CH NUCLEAR H	ER PRODU CAL PIP P P PIP RD PIP / /IFV TES : ensors (/: /: /: T_BED/	: :	:		•	•	: : : : : : : : : : : : : : : : : : : :		•		: :	:
BIO CHEMI TOW II PI /M3 HAZCH /NUCLEAR H : : : : : : : : : : : : : : : : : : :	CAL PIP P PIP RD PIP / /IFV TES : ensors (/: /: /: T_BED/	: :	: : : : : : : : : : : : : : : : : : : :		***************************************	:	:		:	: : :		: : :
TOW II PI /M3 HA7CH /NUCLEAR H : : : : : : : : : : : : : : : : : : :	P PIP RD PIP / /IFV TES : ensors (T BED/	: :	: : : : : : : : : : : : : : : : : : : :	:	:	:	: : : : :		:	: : :	: :	:
M3 HA7CH /NUCLEAR H : : : : : : : : : : : : : : : : : : :	PIP RD PIP / /IFV TES : ensors (:	: :	:	:	:	4	**	: :	:	:		:
NUCLEAR H	RD PIP / /IFV TES : : ensors (:	: :	•	:	:	***	:	: :	:	:	: :	:
dcoustic S	/IFV TES	:	: :	:	:	:		:	: :	:	:	: :	:
Acoustic S	ensors (:	: :	: :	:	:		:	. ,				
	•	page 6	: : : :	:	:	1			• •	ā	:	: :	:
7:	•	page 6	: : 0) :	;			:	:	: :	•	:	: :	:
7:	•	page 6	0) :		:	:	:	:	: :	:	2	: :	:
arget Bac	• •	:		:	:	:	:	:	: :	:	:	: :	9
arget bac	; 1		: :	:	:	3	:	:		:	:	: :	:
arget bac	1	:	: :	*	:	:	*	:	: :	:	:	: :	:
	kground	Signata	ure and	Envir	omen	(р	age 78)	:	: :	:	:	. : :	:
	6.2			:	:	:	:	:	: :	:	:	: :	:
: :	:	:	: :	:	:	:	:	:	: :	:	:	• •	:
hemical A	larm Tec	h (page	e 65):	2	:	1	:	:	3 1	:	:	: :	:
	6,2		—7:	:	:	:	:	:	: :	:	:	: :	:
: :	:	:	:	:	:	:	:	:	: :	1	:	: :	•
DDEV of A	utomatic	Li.qui	1 Agent	Detec	tor, 1	CM85,	XM86 (page	60) :	:	:	: :	:
6.3/	6,4 /		: -:	:	•	:	:	:	2 2	ę	:	1 1	
: :	* *	:	: :	:	:	:	:	:	: :	•	•	: :	•
lat Panel	EL Diap	lays (nage 70) ;	:	:	•	:	: :	•	•	2 •	•
	71.00 pt 100 pt	mages - Manuscopic of	7:	•	±	•	•	•	•		:		
**************************************	*	in the second		•	•	•	•	2		•	•	· -	-
ulti-Sens	or Air D	e fanse	Acquis	ition	(nage	74)	•	•		:		• •	,,
6.2 7:	:		: :	•	1149-	•	•	•	: :	•	•	• •	•
***************************************	•	•		•	•	-	•	•	•	•	•	•	•
uproved H	on~St and	ard Co	nditian	Senso	າເຂັ (ໝ	- 71	n):	, •	: :	:	•	• •	:
6.2 /:		•				-5~ /'	•	:			•		•
	•	•		•	:	•				•	•		•
• •	, ,	•	•	•	•	•	•	•		•	:		•
• •	•	•	• •	•	•	3				ě	•		*
				ě	ě		I .			2	ă.		:
	i .	1	i ;	/ ;	:		.		: :	:	I	:	1

																_
: :	: :	: :	:	:	:	:	:	:	:	:	1	:			:	ï
: FY83 :	:FY85:	:FY87:	:FY89	:	:FY91	:	:FY93	:	:FY95	:	:FY97	:	:FY99:	:	:FY01:	:
:	: :	: :	:	<u> </u>	:	:	1	:	:		: :		::		::	į
:		: :		:	:	:	*	:	:	1	:	:	: :	}	:	:
	PODUCTION			_/	:	:	:	:	:	•	:	:	: :	:	:	:
	RRIER PROD		/	:	:	:	:	:	:	•	: :	:	: :	:	٤ :	:
	EMICAL PIP	_/: :	:	:	:	1	:	:	:	:	:	:	: :	:	: :	:
: TOW II		_/: :	:	:	*	:	;	:	:	:	:	:	: :	;	: :	:
:/M3 HAT		/: :	:	:	?	2	:	•	t	2	:	:	: :	:	: :	:
: NUCLEA	R HRD PIP		2	:	:	:	:	:	:	:	: ;	:	: :	:	: :	:
: :	:/IFV TE	ST BED/:	:	•	:	:	:	:	:	:	:	:	: :	:	, ;	:
: :	:	: :	Ç	•	:	: /	:	;	¢ :	<u> </u>	:	:	: :		: :	:
: :	<i>.</i> :	: :	:	:	:	£	:	:	2	:	: ;	:	: ;	t .	: :	:
:Vehicle	Dynami.cs	Sensor (p	age 79a)	<u>:</u>	:	‡	•	:	: :	:	: :	:	: :	;	: :	:
:/62/:	: :	: :	:	:	1	•	:	:	:	:	•	:	: :	:	.	:
: :	: :	\$ \$	es T	•	\$	•	:	:	: :	:	: :	: :	•	: :	: ;	:
	nvironment	Active R	F Seeker	Test	Red	(page	74)	:	:	2	: ;	:	: :	;	: :	ż
16.21:	: :	2 , 2	٤	.	:	:	:	:	2 :	:	: :	: :	: :	: ;	: :	:
:	.	٤ د	5	:	:	:	:	:	3 :	:	: ;	:	: :	:	: :	:
:Acquisi	tion Subay	atem (pag	e 60)	:	<u> </u>		:	:	; ;	:	, ;	: :	: :	: :	: :	Ċ
ર્સ					C	2			21. 104 Tours		والمرد المساوية					į
: :	: :	\$ 5	:	:	:	:	:			:	3					;
	ala: for A	<u>ir Dofees</u>	e (bake ;	76)	•	:	:	:	: ;	,	: :	: 1	: :	:	: :	:
4631	6.3a	n	:	:	:	?	:	:	;	:	: :	. :	: 1	. :	:	
	: :	*	:	1	:	•	:	7	:	Ė	:	:	: :	:	: :	:
: Datage	Aracoment	Concepte	I rage 61	6)	:	7	:	4	: :	3	: ;	;	:		: :	:
2.م		: :	‡ .	•	;	•	:	:	:	:	2 ;	•	: :	:	2 :	ċ
:	:	•	.	.	•	:	:	:	: :	: ;	: :	;	:	:	t t	,
	Muzzle Se	nsing (pa	ge 68)	:	:	•	•	:	:		: :	: :	: :	: :	: ;	;
1 6.2	. <i>J</i> : :	;	2	:	:	:	9	:	: :	:	: 1	, ;	; ;	:	: :	į
• • •	:		*	\$:	•	:	:	.	:	: :	: .	: :	: :	: :	
:B-14 Mi	c.on IRDA	(page 60)	:	٠,	:	£	:	:	* :	: ;	: :	: :	:	. ;	: ;	
: :/	6.7./:	: :	:	:	:	7.	3	1	٠ , :	: :	: :	: :	: :	: :	: :	!
	<u>:</u> :		:	ŧ	7	:	:	7	: ' :	: ;	: :	: ; ;	: :	:	: :	
	a Theimal	Visær (þ	age 68)	: ,	:	•	•	2	: :		: :	: :	: :	: :	: :	į
1/64		: :	:	:	:	:	•	:	: :	; ;	: :	:	: :	:	: :	
: - :	: :	: :	:	•	:	:	?	*	:	:	: 1	; ;	• :		: :	,
: :-	: :	: :	1	:		•	•	1	: :	: :	:	: 1	:	:	: :	

FY83:	:FY85:	: :FY87:	: :FY89:	: :FY91:	:FY93:	: :FY95:	: : :FY97:	: :: :FY99:	: :FY01
:	: :	: :	: :		: :	1 9	: .	* .	*
:	: :	: :		: :	: :	1			
M2/3 P	RODUCTION		7	: :	: :	: :	: :	: :	1
	RRIER PROD		:	: :	: :	: :	: :	: :	:
	EMICAL PIP	<u> </u>	: :	: :	: :	: :	: :	: :	:
TOW II		_/: :	: :	: :	: :	: :	: :	: :	1
из нат		_/: :	: :	: :	: :	:	: :	: :	2
NUCLEA	R HRD PIP	<u></u> :	: :	: :	: :	: :	: :	: :	:
:	:/IFV TE	ST BED/:	: :	: :	: :	: :	: :	: :	:
:	: ;	: :	: :	: :	: :	1 1	: :	: :	:
:	• • • • • • • • • • • • • • • • • • •	_: . <u>:</u>	•	: _ :	: :		: :	: :	:
	Generation	Focal Pla	ne - Advan	ced FLIR T	ech (AFT)	(page 78)	: :	: :	:
6.		: :	: :	: :	: :	: :	: :	: ;	:
	; ; ;			: :	: _:	: :	: :	: :	:
6.3/		ed Opeerva	tion Set A	N/PVS-6 (p	age /2):	: :	: :	: :	:
0.3/	0.4			: :		: :		* *	:
i ntanta	i i ted Droces	i i aima Cuata	ma (page 70	, <u>, , , , , , , , , , , , , , , , , , </u>				: :	•
	/6.3a/6.		m (haße \c	,					:
	7,7,3,0,0	30/0.4/	• •	• •	•		• •		•
irtorn	e Minefiel	d Detectio	n System (nage 62)	• •	• •	: :	• •	•
	.3a / 6.		6.4	7: :	•	: :	• •	• •	•
:	•	•	: :		: :				•
-5 Mic	ron Focal	Plane Arra	7, Liquid	Phase Epit	axy (page	60) :	1 1	· ·	:
6.2		: :	: :	: :	: :	: :	: :	: :	:
1	- :	: :	: :	: :	: :	: :	: :	: :	:
		tifunction	Laser (pa	ge 66):	: :	: :	1 1	1 :	:
6.3 <i>e</i> .	<i>7</i> : :	: :	: :	: :	:	: :	: :	: :	:
1	: :	: :	: :	: :	: :	: :	: :	: :	:
ide Ac	ea Neutral:		vice (WAND		a): :	: :	: :	: :	:
;	٠	6.2	/ 6.	3a /	: :	: :	: :	: :	:
:		:	:	: :	• •	: :	: :	: :	:
	dened CO2]	Laser Pang	efinder Cor	umon Modul	es (page 7	6): :	: :	: :	:
-	: :	: :	: :	: :	: :	: :	: :	: :	:
-		1 1	: :	: :	:	: :	: :	: :	:
. 2	\$ \$, .	: :	: :	: :	: :	: :	: :	:

:	:	: :			:	: :	. 7770.7	. TWOO:	:
Y83:	:FY85:	:FY87:	:FY89:	:FY91:	:FY93:	:FY95:	:FY97:	:FY99:	:FYO
		<u> </u>		ــنِـــنِــ	_ ;;_		 -		<u>-</u>
(140/0 3	i i		<u></u>			: :			:
M2/3 P	RODUCTION	DUORION	 /				• •	• •	•
FVS CA	RRIER PRO	DUCTION	<u>'</u>				• •	: :	•
TOW II	EMICAL PI	- /: :	•	• •		: :	• •		•
		- /: :		• •					•
	CH PIP R HRD PIP	$-\tau'$::		• •	: :		• •	: :	•
MOCTEV	K UKD LIE	EST BED/:	: :	• •					•
•	1 IFV I	ESI DED/		• •			• •		•
:		• •		• •	: :				:
	Dada-	Technology	Domonatra	(nega 6	٠		•		•
	er kadar	recumorogy	Demonstra	or thage			• •		•
.Z.F				: :	: :	•	• •		•
1. 2 1 2	i i	chniques (78):	• •		• •			•
				:	• •	: :	•	•	·
6.2	163	a 16.36	· · · · · · · · · · · · · · · · · · ·	<i>!</i> : :		• •	• •		•
* * * * * * * * * * * * * * * * * * *	i i	Ranging E	lectronice	(naga 76)		: :			•
An har	(3)	wanging b	· ·	(page 70)		•			•
<u> 6.41</u>	6.36			: :	: :				
ahla	. Piltore	Optical S	witches (n	aga 79a).	•		•		:
GHADIC	TILLEIS,	Opercar	wrecites (b	age //u/.		•			•
	2 /:		• •			: :		: :	:
Maa A.	.ramatia C	hemical Ag	ant Alarm	(ACADA) (na	79.8).			1 1	:
rizz nu			6.4	: :		• •	: :	: :	2
	6.2		6.7 .				:	i i	:
•	: :				: :	: :	: :	: :	:
•	• -	•		• •	• •	:		: :	:
•	• •		• •	• •	: :	:	: :	: :	:
:	• •			• •	: :	4 1	: :	: :	:
•			• •				: :	: :	:
•		: :	: :	: :	: :		: :	: :	:
•	• •	: :	•	•	• •		: :	: :	:
•	• •	: :	; ;	• •	: :	: :	<u>.</u> .	: :	:
•	• •		• •	•	• •	•			_
			• •	• •	• •	: :	: :	: :	- 1

SUPPORT

12170 2 -	: :	. 120.7	1 1	. TRIA 1	:		:	* ***	1 10000	:	* Evo.0 -	. 1110.1
FY83:	:FY85:	:FY87:	:FY89:	:FY91	. :	:FY93:	1:	795:	:FY97	:	:FY99:	:FY01
 -		- <u>ii</u>										
W2/2 0	RODUCTION	<u></u>		7 :	•	• •	•	:	•	:		:
FUC C	RRIER PRODU	ICTION		<i>'</i> :	•	: :	•	•	•	•		•
	EMICAL PIP		 ' :	:	•	•	•	•		•	•	•
TOW II		' /:		•	•	:	:	:	:	•	: :	:
	CH PIP	<u>-/:</u>		:	:	: :	:	:	:	:	: :	:
	R HRU PIP	7 }		•	:	: :	2	:	:	:	: :	:
:	:/IFV TES	ST BED/:	: :	:	:	: :	:	:	:	:	: :	:
:	*		: :	:	: :	: :	:	:	:	:	: :	:
:	: :	: :	: :	•	:	: :	*	2	2	:	: :	;
dvance	d Main-Tanl	k Integrat	ion Studi	es (page	80)	: :	:	:	:	:	: :	:
	BD 7:	: :	: :	:	:	: :	:	:	:	:	: :	:
	: :	: :	: :	:	:	: :	2	Ė	:	:	: :	:
BC Dec	ontaminatio	on (p ag e 8	2): :	:	:	: :	:	:	:	:	: :	:
		: :	: :	: .	: :	: :	:	:	:	:		:
:	: :	: :	: :	:	•	: :	:	:	:	:	: :	:
dvance	d Prognost:		: (03	:	:	: :	:	:	:	:	: :	:
	6.2			<u> </u>	<u> </u>	::	:	:	:	:	: :	:
		<u> </u>	8			/:	:	:	•	:	: :	:
:		: :	: :	:	:	: :	:	:	:	:	: :	:
ombat	Refueling ((page 80)	: :	:	:	: :	:	:	;	:	: :	•
	/: :	: :	: :	:	:	: :	2	:	:	:	: :	:
		: :	: :	:	• , ,	: :	. :	:	:	:		:
	tion Requi	rements to	r Command	& Contr	or (b	age 80	, :	:	:	:		•
6.2	r:	: :	: :	:	:	: :	ž.	:		:	: :	:
	: :	(:	:	:	:	:	:	:	: :	:
	on System	(page 82)		:	:	: :	:	:	:	:	: :	
6.2/:				•	:	: :	=	:	•	7		•
	: -1 N1/4	To a sign a sign a sign a		. Ná skudíh		. (00).					
ateria	al Handling	Edurbment	a suppry	DISCLID	uczon	. page	04):		•	•	• •	•
	6.2				•			:	•	:		•
i Ganasi	i Idana Cand	i itianine (i :						•	•		•
TI	imate Cond	refouring s	A Primary (Da	ge 0/)	•			•	•	:		•
· T	2u/ *				•			Ť	•	:		•

SURVIVABILITY

						,						*				
:FY83:	:FY85:	FY8	7 :	:FY89	· }:	:FY91	•	:FY93	•	FY95	•	:FY97	•	FY99	•	FYOL
6103		•	•	•	•		•	• • • • •		•	•	•	•		•	
				<u></u>			<u> </u>	: -		 -						-
·/W2/3	PRODUCTION				 7	•	•	<u>.</u>	!	•	•	•	•	•	•	•
TRUC C	ARRIER PRODU	CTION		7	 -'	•	•	•	•	:	•	•		•	•	
	HEMICAL PIP		<u> </u>	<u> </u>	:	:	- :	:	•	:	:	:	: :	! !	•	
:/TOW I		~/:	•	•	:	•	:	•	:	:	:	•	:		- :	
	ICH PIP	/:	:	:	•	:	· •	:	:	:	:	•	: :	· !	:	•
	AR HRD PIP	7 :	:	:	:	:	- :	:	:	:	:	:	: :		:	•
:	:/IFV TE		7:	:	:	:	1	:	:	:	:	:	:		:	•
: :	: :	-:	•	1	•	:	:	:	:	;	:	:	: :		:	
: :	: :	:	:	•	:	:	:	:	;	:	:	:	:	;	:	:
:Combat	Vehicle En	vironm	entai	Supp	ort Sy	a i ems	(pag	e 88)	:	:	:	:	: :	•	•	•
	5.3a	ገ :	:	:	•	:	:	:	:	:	:	:	: :		:	:
		⊸ :	:	:	:	:	:	:	:	:	:	•	: :	!	:	:
:Collec	tive Protect	tion M	lateri	al (p	age 88)	:	:	:	:	:	:	: :	}	:	:
:/ 6.		1	:	:	:	:	:	:	:	:	:	:	: :	:	:	: ;
	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	1 :
:NBC Te	chnology (pa	age 96):	:	:	:	:	:	:	1	:	:	: :	;	e n	: :
:/	6.2			⁻ /:	:	:	:	:	:	:	:	:	: :	:	•	1 :
:	:-	-:-	:	•	:	2	:	:	:	:	:	:	: :		:	: :
:Vehicl	e Hardening	(Trac	k and	l Susp	ension) (pa	ge 10	0)	:	2	:	:	: :	ì	:	: :
:/ 6.3	sa 7:	:	:	:	:	:	•	:	:	:	:	:	: :	: :	:	: :
:	-;-;	:	:	:	:	:	:	:	:	:	\$:	: :		:	: :
:Standa:	rdized Fire	Suppr	essío	n Comp	ponent	.ry (p.	age 9	8)	:	:	:	:	: :	: :	•	· t :
:/	6.3a			_):	:	:	:	:	:	:	:	:	: :	:	:	: :
:	: :	:	:	-:	:	:	:	:	:	:	t	2	: :	; ;	:	: :
: Advanc	ed Counterm	easure	s/Veh	icle :	Integr	ated 1	Defen	se Sy	stem	(page	86)	:	: :	:	:	: :
:/	6.36			_):	:	:	:	:	:	:	.	:	: :	;	:	: :
:	:				:	:	:	:	:	:	:	:	: :	;	:	: :
:Microc	limate Cond:	itioni	ng Sy	etem (page	96)	t	:	:	\$:	:	: :	; ;	:	: :
:/6.36/	6.4	:	:	:	:	:	:	:	:	:	:	:	: :	;	:	: :
: ;	: :	:	:		:	:	:	:	:	:	:	:	: :	;	:	: :
: :	: :	:	:	:	:	:	:	:	:	:	:	:	: 2	:	:	: :
: :	: :	:	:	;	:	:	:	:	:	:	:	:	: :		:	: :
: :	: :	:	:	:	:	:	:	:	:	:	:	:	: :		:	: :
: :	: :	:	:	:	:	:	:	:		:	:	:	: :	:	:	: :

SURVIVABILITY

THU O 19				:		;	.:	:	:	:	:	•	:	:
FY83:	:FY85:	:PY87:	:FY89:	:	FY91:	:149		:FY9		:FY97	:	:FY99	9:	:FYO
			<u>-</u> ;;-			<u> </u>	<u></u>	ـــــٰنِـــ	<u> </u>		<u>:</u>	<u> </u>	<u> </u>	_:
/W2/3 P	RODUCTION			7 :	:	:	:	:	:	:	:	:	:	:
	RRIER PRODU	CTION		<i>'</i> :		•			•	:	:	:	:	:
	EMICAL PIP		 ' :		•	•	•	•	•		:		:	:
TOW II		·/:	: ;	:	•	•	:	•	•	•	•	•		
M3 HAT		7	: :	•	•	•	•	•	:	•	•	•	•	•
	R HRD PIP /	7'	: :	:	:	:	•	:	:	•	•	•	•	:
*	:/IFV TES	T BED/:	: :	:	:	:	•	:	•	•	•	•	•	•
:	: :		: :	:	:	:	:	:	:	:	•	•	•	•
:	: :	: :	: :	:	:	:	:	:	:	:	- :	:	:	:
Passive	Countermea	isures (pag	ge 96):	:	:	:	:	:	:	•	•	•	•	•
	2		: :	:	:	:	2	:	:	:	:	:	:	:
:	: ;	- : :	: :	:	:	:	:	:	:	:	:	:	:	:
Secure :	Lighting (p	page 98)	: :	:	:	:	:	:	:	:	:	•	:	:
6.	z k	: :	: :	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	:	1	:	:	:	:	•	ŧ	:	:
	Energy Beas	Reduction	ı (page 9	2):	:	:	:	:	:	:	:	:	:	:
6	3a	<i>_]</i> ; :	: :	:	:	:	:	:	:	2	:	:	:	:
	_ : · ;	·	: :	:		:	2	:	:	:	:	:	:	:
	evelopment	and Demo I	Program (page	86):	:	:	:	:	:	:	:	•	:
	6.3a		: :	:	:	:	:	:	:	:	:	:	:	:
:meno + -			• •	, :	:	:	:	:	:	:	•	:	2	:
	tomatic Che		m Agent	(page	2 102)	:	:	:	:	:	•	:	:	:
	.36	16.4	- <i>/:</i>	:	:	:	•	:	•	:	:	:	:	:
ETTNODA	. Combat V	i Zabisla Cal	; 	.	(0000)	<u> </u>	: (a)	:	:		•	•	:	:
6.3	. COEDAL V	enicie sei	ii Protec	tion	(0,25)	(page	98)	:	:	•		:	:	:
	6.4	7: :		•	•				:	•		:	:	•
ntegra	ted Counter	meseures 1	Faat Rad	(2000	. 04)							:	2	•
·		~~~	The Bea	/ hak	- 74) •	•	:		•			•	:	•
:	<u></u>	6.3	-'; ;	•	•	•	•	•		•	•	•	•	•
•	2 2	•	•	:	•	•	:	•	•			•		•
:	: :	: :	•	•	:	•	•	•	:	•	•	:	•	•
:	: :	: :	: :	:	:	:	:	•	2	• •		•		•
		•	•		•	-		:	:	•	•	:	:	:

	c		

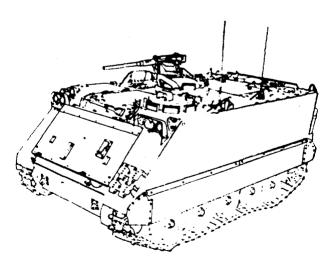
FY83:	: : :FY85:	:ry87:	: :: :FY89:	•			.FY95:	: FY97:	:FY99:	.FY01
1487:	: (814)	: FY87:			1:	:FY93:	: :	: 119/:	: 1199:	: 1101
	 -				÷					 -
/M2/1 P	RODUCTION			7 :	:	: :	• •	: :		
	RRIER PROD	UCTION			:	: :	: :	; ;		•
	EMICAL PIP		 :	•	•			: :		:
TOW II		- /i i			•	: :		: :	: :	:
M3 HAT		_/: :	: :	:	•	: :	: :	: :	: :	:
	R HRD PIP	7: :	: :	:	:	: :	: :	: :	: :	:
:		ST BED/:	: :	: :	:	: :	: :	: :	: :	:
,	: ;	: :	: :	:	:	: :	: :	: :	: :	:
:	: :	: :	: :	:	:	: :	: :	: :	: :	:
3rd Las	er Radar T	Cechnology	Demonst	ator (pag	ge 60)): :	: :	: :	: :	:
2.Z7	: :	: :	: :	: :	*	t :	: :	: :	: :	:
 :	: :	: :	: :	: :	:	: :	: :	: :	: :	:
Stabili	zation Tec			:	:	: :	: :	: :	: :	:
6.2	1 6.3	a 1 6.3	1 6	₹' <u>'</u> ''):	:	: :	: :	: :	: :	:
			-:-:		:	: :	: :	: :	: :	:
	dening of	Ranging E	lectronic	s (page '	76)	: :	: :	: :	: :	:
6.2	6.36 F	: :	: :	:	:	: :	: :	: :	: :	:
:		· :		•	:	: :	: :	: :	: :	:
	Filters,	Optical S	witches (page 79¢) :	: :	: :	‡ 1	: :	1
6.		: :	: :	:	:	: :	: :	: :	: :	:
	: :		• • • •		;	: ;	: :	: :	: :	:
	tomatic Ch				(pag	e 79a).	: :	: :		:
	6.2		6.4	:	:	: :	: :	• • •	: :	:
:					:					
•					:	: :	: :			•
:	: :				•					•
					:					•
:					•					:
			•			: :	• •			•
					•					
			•		•					
•	• •		•	•	•				•	•

)

: Y83:	: : :FY85:	: :FY87	:	: :FY89	:	: :FY91	: :	: :FY93	:	: :FY9!	: 5:	: :FY9	: 7:	: :FY9	9:	: :FY0
:	: :	:	:	1	:	:	:	:		:	:	:	:	:	:	:
		~ -	1		:	:	;	:	:	;	:	:	-	-:-		
M2/3 P	RODUCTION				7	:	:	:	:	:	:	:	•	:	\$:
FVS CA	RRIER PROD	UCTION		7	=	:	:	:	:	:	:	:	:	;	:	:
B10 CH	EMICAL PIP	<u> </u>	:	₹	:	:	:	:	:	:	:	:	:	:	:	:
TOW II	PIP	<u>_/:</u>	:	:	:	:	:	:	:	*	:	:	:	:	:	:
	CH PIP	<u>-</u> /:	1	:	:	:	:	:	:	:	:	:	:	:	:	:
NUCLEA	R HRD PIP	<u> </u>		:	:	:	:	:	:	:	÷	:	:	:	:	:
:	:/IPV TE	ST BED	1	:	:	•	:	:	:	:	:	:	:	:	:	:
:	: :	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	d Main-Tan	k Integ	rati	on Stu	dies	(baße	80)	:	:	:	:	:	:	=	:	:
<u>_</u>	BD /:	:	:	:	:	:	:	:	:	:	:	2	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
BC Dec	ontaninati	on (pag	şe 82.):	:	:	:	:	:	:	:	2	:	:	:	:
	<i>]</i> :	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:
-:-	::	:	:	. :	:	:	*	:	:	:	:	:	:	:	:	:
dvance	d Prognost		186 80	0)	<u>:</u>	.:	:	:	:	:	:	:	:	:	:	1
	6.3					<u>/:</u>	┶	<u></u>	:	:	:	:	:	:	:	:
			6.3						11	:	:	:	:	:	:	:
. :	: :	<i>,</i> : .	:	:	•	:	:	:	:	:	:	:	:	1	:	:
ombat	Refueling	(page 8	10)	:	:	:	:	:	:	2	:	•	:	:	:	:
	/: :	1	2	:	1		:	:	:	:	•	:	:	1	:	;
. :	_ : _ : ,	:	:_	:	•	:	•. ,	;	:	:	:	:	:	:	:	:
	ition Requi	remente	IUF	Comma	ina a	Contr	or (£	age o	0)	:	:	:	:	•	:	:
6.2	: :	•	•	•	1			-	<u>.</u>	•	•		:	•		- I
	• •	, :		:		-	-	-	2	:	:	•		:	:	•
	on System	(page c)//	:		•		•	•	:	:	•	•	•		:
6.2/	1 1	:	•	:	-	•		•	•	:	•	:	•	:		•
•		-:		· .	.1 %.			• (. 011	:	:	:	•	•		•
eterie	l Handling	Equip	ment (g onbi	ים אוי	LBITLD	ut ton	(pag	2 OZ)		:	:	:	•		:
	<u>6.7.</u>		ŗ.	:	•	•				•	•	•		•	•	
	: :	;	ĭ	ī	i .	ě	•	•	-	÷	÷	1	•	•		I
	limate Cond	2 - 2 2 -	C	/		400										_

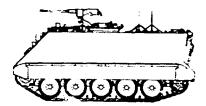
SURVIVABILITY

: :	: :	: ::	:	:	:		:	:			:	:	:	:	:
FY83:	:F785:	:FY87;	: FY	89:	:FY9	1:	:FY93) :	:FY95	:	:FY97	:	:FY9	9:	:FY01
		<u> </u>	<u> </u>	:_		<u>.</u>		<u></u>	_:	<u> </u>	<u> </u>	ـــــ	<u></u>	<u>.</u>	<u>:</u>
	<u></u>		<u>:</u>	<u> </u>	:	:	:	:	:	:	:	:	:	:	:
	RODUCTION			/	:	:	:	:	:	2	:	:	:	:	:
	RRIER PROD		/	:	:	:	;	:	:	:	:	:	:	:	:
	EMICAL PIP	_/: :	:	:	:	:	:	:	:	:	:	:	:	:	:
/TOW II		_/: :	:	:	:	:	:	:	:	:	:	:	:	:	:
/M3 HAT		_/: :	:	:	:	:	:	:	:	:	:	:	:	:	1
NUCLEA	R HRD PIP	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:/IFV TE	ST BED/:	:	:	:	:	:	:	:	:	:	:	:	:	:
. :	:	: :	:	:	:	:	:	:	:	:	:	:	1	:	:
. :	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
Combat	Vehicle En	vironment	al Sup	port	System	s (1	age 88)	· :	:	:	:	5	:	:	:
1-6	. 3a	- ን: :	:	· :	· :	:	· 1	:	:	:	:	:	2	:	:
		- : :	:	:	:	:	:	:	:	:	:	:	:	:	:
Collect	ive Protec	tion Mate	rial (Bage	88)	:	:	:	:	:	;	:	:	:	:
1 6.3				• :	•	:	:	:	:	:	:	:	•	:	•
'	· ·			:		:	:	:	:	:	:	•	1	:	:
NBC Tec	hnology (p.	sge 96):	:	•		:	•	:	:	:	•	:		:	:
,	6.2		— <u>/:</u>	•	•	•	•	•	:		•	•		•	•
ــــا،	- 'e:-		~':	•	•	•	•	•	•	•	•	:	•	•	-
Vehicle	Hardening	(Track a	nd Sus	nensi	an) (n	дσь	100)	•	•	:		•	•	•	
/ C.3			•	•	· · · · · · · · · · · · · · · · · · ·	•		•	•	ì	;	•	;	÷	:
. ' - ' ع	~. :	: :	•	÷	•	:	;	;	:	:	:	:	:	:	:
Chander	dized Fire	Suppress	dan Ca	mnana	niry (. 081	:	:	:	:	:	:	;	:
·/	6.30	зорргеве	<u> </u>	тьоне:		Pag.	- /0/	:	:	:	:	:	•	:	:
<u>'</u>	6.30 <u></u>		' <u>:</u>	:	:	:	:	:	:	:	:	:	:	:	:
Marana	ed Counterm		Kabénta	Into	nratad	Do.	inaan Ou	•		۰۵٤١	:	:	:	:	:
JOVETICE		easures/v	enicie	nice	K L a L eu	nei	ление оу	R C EM	(harge	. 007	•	-		•	-
'	6.3b		/:		•	•	:	3	•	•	•	•	•	:	
				,;	. 0()	•	•	•	:	•		:	•	•	•
	imate Cond	itioning	System	(pag	E 20)	:	:	:	:	•	:	:	:	:	•
16.36/	6.4	: :	:	:	:	Ė	:	:	:	:	:	:	2	:	2
:	: :	: :	:	;	:	:	:	:	:	:	:	:	:	:	:
: :	: :	: :	:	:	:	:	:	:	*	:	:	:	:	:	:
: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	: :	: :	•			•	•		•	•		•	:		

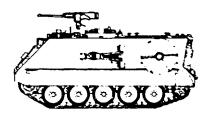

Y83:	:FY85:	:FY87:	: FY	: 39:	: : ۲۷9	: 1:	: :FY9:	3:	: :FY	95 :	: :FY	: 97:	: :FY	: 99:	: :FY	01
<u> </u>		: :	:	:		:	:	<u>:</u> _	:_	:	:	:	:	;	:	•
	: :	: :	1		:	:	:	:	:	•	:	:			-:	_
	RODUCTION			/	:	:	:	:	:	:	:	:	:	:	:	
	RRIER PROD			:	:	:	:	:	:	:	:	:	:	:	:	
	EMICAL PIP	_/:	:	*	:	:	:	:	:	:	:	:	:	:	1	
TOW II		_/: :	:	:	:	:	:	:	:	:		•	:	:	:	
	CH PIP	_/: :	:	\$:	:	:	:	:	:	:	:	:	:	:	
NUCLEA	R HRD PIP		:	\$:	:	:	:	:	:	:	:	:	:	:	
:	:/IFV TE	ST BED/:	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
assive	Counterme	asures (p	age 56)	; ;	:	:	:	:	:	:	:	:	:	:	:	
	6.2	_ <i>]</i> ; :	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	:	;	:	:	2	:	:	:	:	:	:	:	
	Lighting (page 98)	:	:	:	•	:	:	:	:	:	:	:	:	:	
6.	7. k	: :	:	2	:	:	:	:	:	:	:	:	:	:	:	
	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	•	
irect	Energy Bea	m Peducti	.on (p a g	ze 92) :	:	:	:	:	:	:	1	:	:	:	
6	.3a_	<u></u>	:	:	:	:	:	:	:	:	:	:	:	:	:	
-:	: :	- : :	:	:	:	:	:	:	:	:	:	:	:	:	:	
lrmor D	evelopment	and Demo	Progra	em (p	age 86)):	:	;	:	:	:	:	:	:	:	
	6.3a	/:	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: 1	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	:	:	
M22 Au	tomatic Ch	emical Al	arm Age	ent (page 10	12)	:	:	:	:	:	:	:	2	:	
	.36	6.4		:	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	- ;	:	:	:	:	:	:	:	:	:	:	:	:	
	Y Combat	Vehicle S	elf Pro	tect	ion (C	(YZV	(page	98)	:	:	:	:	:	:	:	
6.3	<u>/: : : : : : : : : : : : : : : : : : : </u>	_: :	:	:	:	:	:	:	1	:	:	:	:	:	:	
	6.4	/: :	:	:	:	:	:	2	:	:	:	:	:	:	•	
nLegra	ted Counte	rmeasures	Test I	Bed (page 94	()	:	:	:	;	:	:	:	:	:	
:	:/	6.3	7:	:	:	:	:	:	:	:	:	:	:	:	:	
:	:		-	:	:	:	:	:	:	:	:	:	:	2	:	
:	: :	: :	:	:	:	:	:	:	:	:	*	;	:	:	:	
:	: :	: :	:	:	:	:	:	:	1	;	:	:	:		:	
							_		-			_	-		-	

: FY83:	: : :FY85:	: : :FY87:	: : :FY89:	: : :FY91:	: :FY93:	: : :FY95:	: : :FY97:	: : :FY99:	: :FY01
.102:		1 1	: :		: :	: :	: :		:
 -				~ `			: :	* :	:
12/3 F	RODUCTION	·		: :	: :	: :	; ;	: :	:
FVS CA	RRIER PROD	UCTION	7:	: :	: :	: :	: :	: :	:
	EMICAL PIE			: :	: :	: :	: :	: :	:
OW II	PIP	_/: :	: :	: :	: :	: :	: :	: :	:
	CH PIP	_/: :	: :	: :	: :	: :	: :	: :	:
UCLE	R HRD PIP		: :	: :	: :	: :	: :	: :	:
	:/IFV TE	EST BED/:	: :	: :	: :	: :	: :	: :	:
:	: ::	: :	: :	: :	: :	: :	: :		<u>•</u>
:	: :	: :	: :	: :	; ;	: :	: :	: :	;
ce Ma	isk, Combat	: Vehicle (Crewman's (page 92)	: :	: :	: :	: :	:
.4J:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
chnol	ogy Base I	Efforts in	Infrared S	creening (page 100)	: :	: :	: :	:
	6.2	/:	: :	: :	: :	: :	: :	: :	:
-:		: :	: :	: :	. :	: :	: :	: : :	:
hnol	ogy Base I	fforts on	Multi-Spec	tral Scree	ning (page	e 100) :	: :	: :	:
	6.2	- <u></u> /:	: :	: :	: :	: :	: :	: :	:
:	: :	::	: :	: :	: :	: :	: :	: :	:
Legra	ited CVC CI	lothing Sy	stem (page	94)	: :	: :	: :	: :	:
:	: :[6.36 /	6.4	_ <i>t</i> : :	: :	: :	: :	: :	:
:	: :	: :	: :	: :		: :	: :	: :	:
Pene	trator Tec	chnology/Pe	enetration	Mechanics	(page 94)	: :	: :	: :	:
6	.2 /:	: :	: :	: :	: :	: :	: :	: :	:
6.38	:	: :	: :	: :	: :	: :	: :	: :	:
-:	 : :	: :	: :	: :	: :	: :	: :	: : :	:
lmet.	, Compatibl	le, Commun;	ication/Aur	al Protect	ive Syste	n (page 94)):::	: :	:
6.4	- -]: :	: :	: :	: :	: :	: :	: :	: : :	:
- :	: :	: :	: :	: :	: :	: :	: ;	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
2	; :	: 1	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: : :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: : :	:
									•

THIS PAGE INTENTIONALLY LEFT BLANK


M113 FAMILY OF VEHICLES(FOV)

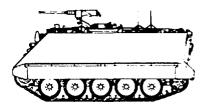
The basic function of this FOV is an armored personnel carrier. These vehicles are powered by a Detroit Diesel engine rated at 212 HP. The drive train consist of an Allison automatic transmission, right angle gear box, controlled differential, and final drive gear powering the vehicles tracks.


M113A2 ARMORED PERSONNEL CARRIER

Lightly armored, full-tracked combat vehicle which provides transportation for troops or cargo. PIP's include: cooling, suspension, external fuel tanks, heater, stretch, NBC, STE/ICE, XT 150.

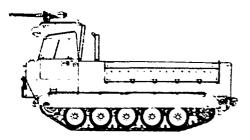
M106A2 ARMORED SELF-PROPELLED 107MM MORTAR

Transports and supports the 4.2 inch mortar M30 during oncarrier and off-carrier tactical operations. PIP's include: cooling, suspension, heater, NBC, STE/ICE, XT 150.



: : FY83	: }:	: :FY8	: :5:	: : FY	: 87:	: :FY	: 89:	: : FY'	: 91:	: : FY93	: }:	: : FY9	; 5;	: : FY!	: 97:	: : FY	: 19 :	: : FY0
:	:	:	:	;	:	:	:	;	:		:	:	:	:	:	:	:	:
:	: -	:	:	-:-	:	-;	-;	:	:	:	:	-;	;	:	;	:		:
;	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:
	:	;	;	:	:	:	:	:	:	2	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	2	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:
	;	:	:	:	:	:	:	:	:	:	:	:	;	:	;	:	:	:
	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:
/	7	PRO	DUCT:	LON			:	:	:	:	:	:	:	2	:	:	:	:
7			PIP				7:	:	:	:	:	:	:	:		:	:	:
	:	-:	:	:			-	:	:	:	:	:	:	:		:	:	:
		1		:			:	:	:	:	:	:	:	:	:		:	;
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	•	2				1				1	:		•		•	1	•	:
	:	:	•		•	:	:		÷	:	:	:	:	:	÷	:	:	ì
						:				:	:	:	•	:		•		•
	:	:	÷			:	•		÷	:	:	:	:	:	:	:		:
	•	,	•	•	•	•		•	•	:	:	1	•	•	•			•
	:	•	•	•		:			·	;	:	:	:	:	•	:	:	:
	•	,		•	•	,	,	•	•	i,	•	Ţ,					÷	,
	:	;	•	·		į	į	<u>:</u>		:	:	:	:	:	:	:	:	;
	·	,	•		•	•	•	•	•	•	•	,	•	•	,	•	÷	,
	;	;	;	·	•	•	-	•	÷	;	;	÷	•	:	•	•	:	
	•	•	•	•	•	•	•	-	•	:	•	•	•	•	•	•	:	•
	;	:	:	÷		:		:	÷	•	:	·	•	•	:	:	:	:
	:	·		·		÷	-	•	:	•		·	:	·	:	÷	:	:
	:	;	:	:	:	:	•		:	;	:	:		;	:	:	:	:
		:	•	•	:	:	÷	•	:	•	:	:	:	:	•	•	:	:
/	 -	ppn	DUCT:	TON	•	•		•	:	•		:	•	:	•	:	:	:
/		710	PLP	1014			7 ;	•	:	•	:	:	:	;	:	:	:	:
<u>′</u>	,	,	:		-;		-′ :	:	:	:	:	:	;	:	:	:	:	:
	:	•	•	:	:	:	•	•	•	•	•	•	•	•	•	•	٠	•

D-3


M125A2 ARMORED SELF-PROPELLED 81MM MORTAR

Transports and supports the 81MM mortar during on-carrier and off-carrier tactical operations. PIP's included: colling, suspension, heater, STE/ICE, XT 150.

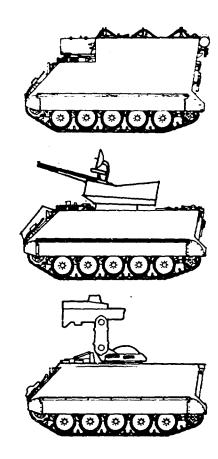
M548A1 CARGO CARRIER

Unarmored, full-tracked vehicle which provides transportation of ammunition and general cargo to forward areas in support of field units. PIP's include: cooling, suspension, stretch, NBC, STE/ICE, ST150, smoke grenade launcher, vented face piece, improved engine access panel.

M I	13	T TO	ו ער	O SIG	CR.	ΔM

: FY83:	: : FY85 :		: : :FY87:	: :FY8	: 39:	: :FY	; 91:	: : FY !	: 93:	: : FY	: 95:	: : FY	: 97:	: : FY	: 99:	: : FY	01
	::		: :	:	:	:	:		_ :	:	_;	:	_ :_	<u>:</u>	: _	_:_	
:	- :	-	: :	:	;	;	:	:	:	;	:	:	:	:	:	:	
:	: :		: :	:	:	:	:	;	:	:	:	:	:	:	:	:	
:	: :		: :	:	:	;	;	;	2	:	:	:	:	:	:	:	
:	: :		: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: :		; ;	ï	:	:	:	:	:	ï	:	;	:	1	ï	:	
:	: :		; :	;	:	:	:	:	:	:	:	:	:	;	:	:	
:	: :		: :	:	:	:	:	:	:	:	:	:	:	•	:	:	
:	: ;		: :	;	:	:	:	:	:	;	:	:	:	;	:	:	
, <u></u>	, ; ;		: :	:	:	:	:	;	÷	:	:	:	:	:	:	:	
	PRODU	CTIC	N		-, ;	:	:	;	:	;	:	:	:	:	:	:	
	<u>F</u>	1P			_/:	:	:	;	:	:	:	:	:	:	:	:	
:	: :			:	;	:	:	;	:	:	:	:	:	:	:	:	
:	; ;		: :	:	:	:	:	:	:	;	:	:	:	;	:	:	
:	: :		:	:	:	;	:	;	:	:	:	:	:	:	:	:	
:	: :		: :	:	:	:	:	:	;	;	:	:	:	;	:	:	
:	: :		: :	:	:	•	:	:	:	•	•	:	:	:	:	:	
:	: :		•	:	:	:	:	:	:	:	•	•	•	:	•	:	
•	: :			:	:	:	•	:	•	•	•	•	•	•	•	•	
•	: :			•	:	:	:	:	:		•	:	:	:	•	:	
•			:	•	;	:	•	:	•	•	÷	•	•	:	•	•	
:			•	•		•	:	•	:	•	•	:	•	:	:	:	
:	• •		: :	•	•	•	:	:	:	•	:	÷	•	;	:	:	
•	•		: :	•	•	•	:	•	:	•	:	:	:	·	:	:	
:	: ;		•	•	:	:	:	•	•			:	:	:	:	:	
:	: :		: :	•	:	•	:	·	:	:	:	:	:	:	:	:	
:	• ;		: :	·	:	:	•	•	÷	•	:	•	•	:	:	·	
:	: :			;	•	•	•	;	•	•	•	•	•	•	•	•	
•			: ;	:	•	:	÷	:	•	•	•	•	•	•	•	•	
:				:	:	:	÷	:	•	:	:	:	•	•	:	•	
 -	PRODU	ICTIO)N	•	;	:	:	•	•	•	•	;	•	•	•	•	
	I	IP			7:	:	:	•	:	•	•	;	•	•	•	•	
			: :	-:-	-/ <u>-</u>	į	į	•	•	•	•	,	•	•	:	•	
•				•	•	•	•	•	•	•	•	•	•	•	•	•	

M577A2 ARMORED COMMAND POST


Light tracked command post carrier is a full-tracked lightweight carrier used as operational staff office and command post. PIP's include: cooling, suspension, heater, STE/ICE, XT 150.

M741A1 VULCAN AIR DEFENSE SYSTEM

Uses the 20MM 6000 rounds per minute machine gun to furnish effective mobile air defense. PIP's include: cooling, heater, NBC, STE/I/E, XT 150.

M901 IMPROVED TOW VEHICLE

This weapon system uses present TOW components mounted on a modified chassis. PIP's include: cooling, suspension, external fuel tanks, heater, NBC, STE/ICE, XT 150, smoke grenade launcher.

MILIS FOV PROCE.	M	DDOCRA	VOV	M113	

: FY83:	: : :FY85:	: : :FY87:	: :FY89:	: :	91:	: :FY93:		: :FY95:	; ; F	: ¥97:		99:	: : P Y	01
<u>:</u>	2 2	; ;	1 1	:_	_:_	<u> </u>		<u>: :</u>		<u> </u>		:_	:	_
;	: :	2	: :	:	:	: :		: :	;	:	:	2	:	
:	: :	: :	: :	:	;	; ;		: :	:	:	:		•	
;	: :	2 2	: :	:	:	: :			•	•	•	•		
;	: :	2 2	: :	:	:				•	•	•	•	•	
:	: :	: :	: :	•	•	•		: :	•	•	•	:	•	
,;	DD ODVIOR	•	: :	•	•	• •		: :	•	•	•	•	÷	
	PRODUCT PIP	IUN	- :	:	•			: :	•	;	•	;	·	
			 -';	:	:	•		: :	:	:	:	•	•	
•	: :	; ;	• •	•	•	•		, ;	•	,	•	•	2	
:	• •	: :	• ;	•	•	•		2 2		•	1	ì		
;	: :	• •		;	•			: :	:	:	:	;	•	
:	; ;			2				: :	:	:	:	;	;	
•	•		2 2	ž	2	2 :		: :	:	:	:	:	:	
•	: :	1 1	1 1	;			:	: :	:	:	2	:	:	
•	2 2	1 1	: :	2	:	: :	;	: :	;	;	:	:	:	
:	: :		: :	:	:	:	;	: :	:	:	2	:	2	
 -7	PRODUCT	ION	2	:	:	: :	:	: :	:	2	:	2	2	
	PIP			:	:	: :	:	2 2	:	:	:	:	2	
	: :	: :	· : :	:	:	: :	:	: :	:	2	;	:	:	
:	: :	: :	: :	2	:	: :	!	: :	:	:	:	:	:	
:	: 2	2 2	: :	:	:	:	;	; :	:	2	:	:	:	
:	: :	: :	: :	:	:	:	;	: :	:	2	:	;	;	
2	: :	: :	: :	;	:	:	:	: :	:	:	:	:	:	
:	: :	; ;	;	:	:	;	;	: :	:	•	:	:	•	
:	: :	: :	: :	:	:	:			•	•	:	•	•	
:	: :	: :	:	1	•	:	:		•		•	•	•	
:	: :	: :	•	•	•	•	:		•	•	•	•	•	
,	PRODUCT	i i	:		•		•			•	•	÷	:	
	PI		 -		:	•	•	: ;	•	:	;	•	·	
		PRODUCTI		-		•	•		,	•	;	•	:	
•	/ F151-V	PRODUCTI	<u> </u>		•	,	•	• •	•	:	;	:	:	
•	•	,	2		:	2	•		;		:	:	:	
•	; ;	•	•		:	•	:	; ;	:	:	:	:		
:	•	• •	•	,	Ţ	•			•	,	·	,	,	

c31 :FY87: :FY89: :FY91: :FY85: MILIAZ PRODUCTION PIP FIST-V PRODUCTION :Low Cost_Land Navigation (page 10): :Millimeter Wave Multichannel Command Post Radio (MCPR) (page 12): 6.4 7 : : : : : : : : :Low Phase Noise Crystal Oscillator (page 10): 6.2 / 65b /: : : : : : : : Handheld Encryption and Authentication Device (page 8): :Vehicular Intercommunication System (page 16) : (6.36 / 6.4 / : : : :Objective HF Radio (page 12) : 1/6.2 [6.3b :Millimeter Wave (MMW) Wireless Intercell Communication System (WICS) (page 10); 6.2 / 6.36 :Single Channel Ground and Airborne Radio Subsystem (SINCGARS) (page 14) 1/431 / : : : : : : : : :SOS requency Synthesizer (page 14) 1/62 / 6.34 :VHSLC Phase 2 Chip Set (page 16) :

 $c^{3}1$

C)

: :FY83:	: :FY85:	: :FY87:	: : :FY89:	: :1791	: : : :FY9:	: 3:	: : :FY95:	: :FY97	: : : : : : : : : : : : : : : : : : :	: : : :FYO1
	1 1	! :	: 1	:		:	: :	1		: :
					:		: :	:	1 1	
	H113A	2 PRODUCT	LON :	:	: :	:	: :	:	: : :	: :
T	PIP		/:	:	: :	:	: :	:	: : :	: :
:	:/ FIST-	V PRODUCT	ION _/:	:	: :	:	: :	:		: :
. :	: :	1 1	: :	1	: :	:	: :	1	: : :	: :
:	: :	: :	: :	•	: :	:	: :	: ,	: : :	: :
VHSIC PH	ase I Chip	Set (page	e 16) :	:	: :	1	: 2	:	: : :	: 1
/ 4.3		: :	: :	:	: :	:	: :	:	: : :	: :
	: :	: :	: :	:	: ;	2	: :	:	: :	: :
Tactical	Power Sup	oplies (l.!	5 Kw TEG)	(page 14	4) :	1	: :	: <u>:</u> .	<u> </u>	<u>: _ :</u>
7	6.Z		6.34		6.36		7		6.4	
	: :				: :	:	1 1	:	: :	: - : -
Adaptive	VHF Radio	Applique	s for SINC	GARS-V	(page 6)	:	: :	:	: : :	: :
:/4.	2 / 6.35		: :	:	: :	:	: :	:	: : :	: :
:	: :	_: :	: :	:	: :	:	: :	:	: : :	: :
ATMOT/A	r Covert h	let (page (6): :	:	: :	:	: :	:	: :	: :
6.3	/ :	: :	: :	:	: :	:	: :	:	: : :	: :
•	: :	; :	: :	:	: :	:	: :	:	: : :	: :
Modules	for Techno	logy Inser	rtion (pag	e 12)	: :	:	: :	1	: : :	: :
<i>[</i>	6.2 , 6.3	اما	; :	:	: :	:	1 1	2	: :	: :
:	: :	: :	: :	:	: :	:	: :	:	: : :	: :
Frequenc	y Hopping	Antenna M	ultiplexer	(page)	3) :	:	: :	:	: :	: :
	6. E / 6.3			:	: :	:	: :	:	: :	: :
: : -	; ;		:	:	: :	:	: :	:	: :	: :
High Por	ær Vehicul	lar Antenn	n (page 8)	:	: :	:	: :	:	: : :	: :
16.36	7: :	: :	: :	:	: :	:	: :	:	: :	: :
-:	· :	: :	: :	1	: :	:	: :	:	: :	: :
500 Vati	L VHF Power	r Amplific	r (page 6)	:	: :	:	: :	:	: :	: :
76.3]	: :	: :	: :	•	: :	2	: :	:	: :	1 1
:	: :	: :	: :	:	: , :	:	: :	:	:	: :
Power Se	ources/Adv	anced Tact	ical Power	Source	s (page l	2)	; :	:	: :	: :
6.2	/ 6.3	b /:	: :	:	: :	:	: :	:	: :	: :
	1 1	:	: :	:	: :	:	: :	1	1 1	: :
: :	1 :	: :	: :	:	: :	:	: :	:	: :	: :

_____M113 FOV PROGRAM

PIREPOWE	R												
: :: :FY83:	: :: :FY85:	: : :FY87:	: :FY89:	: :FY91	-	FY93:	:FY	95:	: FY97:	,	PY99:		FY01
• • •	: :	1 1		:	: :	: :	:	•	: :		:	:	
		7		:			 ;						
/	7 m113	A2 PRODUC	TION :	:	: :	:	:	:	: :	:	: :	*	
7	PIP		/:	:	: :	: :	:	:	: :	:	: :	:	
:	:/ FIST	-V PRODUC	TION /:	:	: :	: :	2	:	: :	:	:	:	
: :	: :	: :	: :	:	: :	: :	:	1	: :	:	:	:	
:		<u>:</u> ;			: .:	:	:	:	: :	:	:	:	
	nor Missil	e System	Optimuza De	sign (pa	ge 22)	•	:	:	: :	;	:	:	
<u> </u>	6.2	<i></i> /: :	: :	:	: :	:	:	:	: :		:	:	
. Chanad	~ · · · · · · · · ·			:	: :			1	: :			:	
Snaped	Charges (p	age 41g)	:	•			•			•		•	
·/	-6.2	-;,-	—J: ;	•	: ;		:	:	: :			:	
Control	System De	velorment	(ATAADS)	(page 28	;		;	i	: :			:	
(G.)		.3a /	: :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	: :	:	:	•	: :		:	:	
	<u> </u>	1	: :	:	: :	: :	:	:	: :			t	
Inertia	1 Componen	t Develop	ment (ATA/	MDS) (pag	e 36):	:	:	:	: 1	:	: :	:	
1					6.2								一,
::	: :	; ;	: :		1	:		•	9				
/	relator (6	.1 Resear	ch in MSL	and H) (page 4	ili) I	:	:	: :		: :	:	
:/	<u>6.1</u>	_ <i>_!</i> :	: :	:	: :	:	2	:	: :	:	: :	;	
1	: :	: :	: :		: :	:			1 1		, :	. 201	
Kinetic	Energy Pe	netrators	10r Gu104	ed Wiesii	es/nyp	berver	ocity M	188116	Penetr	ALOFE	(pag	e 38)	
·/	6.3a	<i>'</i> :	: :	•			:	•	•			•	
•		• •		:	2 1	•	•	ž	1 1	j		•	
	•		: :	:	: 1	:	•		1 1			•	
		: 1		:	: :		1	:	1 1			:	
, ,		: :	: :	:	1	: :	1	1	1 1	;	:	1	
: :	: :	: :	: :	:	1 1	: :	:	:	: :	:	2	:	
: :	: :	1 1	: :	1	1 1	2	•	:	1 1	:	: :	1	
:	: :	1 1	1 1	:	1 1	2 1	•	t	: :	1		:	
: :	1 1	1 1	: :	:	1 1	: :	1	:	: :	;	: :	:	
: ;	: :	: :	: :	1	: :	: :	1	:	: :	1	: :	:	
: :	1 1	: :	: :	:	: :	: :	4	:	: :	1	: :	:	
: :	2 2	: :	; ;	3	1 1	:	:	:	: :	:	:	:	

FIREPORER :FYO1: :FY83: :FY85: :FY87: :FY89: :FY91: :FY93: M113A2 PRODUCTION :MM Wave and Laser Command and Beamrider (page 41a) 6.2, 6.3a :Kinetic Energy Guided Missile (page 38): :VHSIC Fire and Forget Seeker (page 41k): :Plume/Laser Unguided Missile Experiment (page 41c) : : : : : :Precision Aim Technique (page 41c): : Autonomous Acquisition Algorithms and Processors (page 24) : :Kinetic Energy Missile (page 38) : Low Cost Imaging Seeker Options (page 40)

v	TE	17	DI	٦u	E.I	
г	1.1	L.	rı			ľ

FY83:	:FY85:	:FY87:	:FY89:	:FY91:	FY93:	FY95:	:FY97:	:FY99:	: FY01
:		`		<u> </u>	<u> </u>			<u> </u>	
سنسر	7 : :	: :	: :	: :	: :	: :	: :	: :	:
/		A2 PRODUCT	ION :	: :	: :	: :	: :	: :	:
	PIP	V propues	 /,:	: :	: :	: :	: :	: :	:
:	:/ FIST	- V PRODUCT	10N /:	: :	: :	: :	: :	: :	:
:	: :	: :		: :	: :	: :	• •	: :	:
: ::::::::::::::::::::::::::::::::::::		i : .a. Minaila	(BOC V) (20)-	: :	: :	: :	: :	:
		ed Wissile	(FOG-M) (page 30):	: :			: :	:
6.	<u> </u>			: :	: :			: :	:
i Law Val	i i	i i Alaaitu Mi	esile Syst	- (neac <i>h</i>	٠			: :	:
6.2		/ 21	6.4	en (page 4	0): :			: :	
<u> </u>	16.341	<u>6.36 / </u>		— <i>—-</i> /:				: :	:
Minimum	Sioneture	Matar for	Anti-Tank	(nece 41e	· · ·	: :	: :		•
	6.2 7:		· ·	(page 41a	,	: :	: :	: :	•
;	<u></u>		2 1	: :	: :	: :	: :		
Next Ge	neration o	f Propella	nts (page	41a) :		•	: :	: :	:
, - 112 2	6.2	/:		1 1	: :		• •		•
:	: :		: :	: :	: :				•
Very Lo	ng Kinetic	Energy Pe	netr at ors	(page 41k)	: :	: :	: :		:
6.1):	· :	: .	: :	: :	: :		: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
Warhe a d	Fuze Tech	nology Syn	thesis (pa	ge 41k):	: :	: :	: :	: :	:
<u> </u>					6.2				
-:	: :	: :	: :	: :	: :	: :	: :	: :	-:-
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
;	: :	: :	: :	: :	t :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:

MOBILITY

																 .	
:FY83:	:FY8	5:	:FY87	7:	:FY8	9;	:FY91	:	:FY93	:	:FY9	· :	:FY97	:	:FY9	9:	:FY01
: :	:	:	:	:	:	:	:	:	:	:	:	:	3	:	:	:	:
: :	:	:	~;	:	:	1	~~~	7	:	:	•	:	:	:	:	:	:
:/	7	M113.	A2 PROI	UCTIO	NN	:	:	2	:	:	:	:	:	:	:	:	:
:7		PIP				/ :	•	:	:	:	:	:	2	:	:	:	:
: :	:/	FIST	-V PROI	UCTIC)N	/:	:	:	:	:	:	:	:	:	:	:	:
: :	:	1	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	2	:	:	:	:	:
Combat	Hobili	ty F	uels (p	age 4	6)	:	:	\$:	:	:	:	:	:	:	:	:
:/ 6.	1,6.2	. 6.3	3): [`]	:	:	:	:	:	:	:	:	:	:	:	:	1
`			-:	´±	:	:	:	:	:	:	:	:	:	:	1	:	:
Tank-A	ı təmət i	ve T	ech/Eng	gine (Conce	pts fo	r Alt	ern	ate Fue	ls	(page !	56)	:	:	:	:	:
:/		6	. 2				ን:	:	:	:	:	:	:	1	:	:	:
: :	:	:	1	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	:	:
:Transmi	ission	Comp	onent I	evelo	pmen	t (psg	se 56)		:	:	:	:	2	:	:	:	:
:/						4	. 3										- /:
: -	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	~ :
Lubric	ant <u>e</u> fo	r Co	nventi	nal/N	lon-C	onvent	ional	. En	gines (pa	ge 52)	:	:	:	:	:	:
:/ 6.1	6.7	, 6.	3	i:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	;	:	:	:	:	Z	:	:	:	:	:
:Vehicle	e Engir	ie De	velopme	ent/Er	ngine	Conce	pts 1	or	Alterna	te	Fuels (page	58)	:	:	:	:
: :/゙				6 3	3] :	:	:	:	:	:
: :-	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:
: Corros:	ion Pre	event,	atives	(page	: 48)	:	:	:	:	:	:	:	:	:	:	:	:
:/ 6.1	6.2	. 6	. 3	/:	:	:	:	:	:	:	:	:	:	:	:	:	: :
: :	:	:	:	':	:	:	:	:	:	:	:	:	:	:	:	:	:
:Advance	ed Air	Fi.1t	ration	(page	42)	: _	. :	:	<u>:</u>	:	:	:	:	:	:	:	.:
:/							2										_/ <u>;</u>
:	:	:	: -	:	:	:	:	:	-:	:	:		:	:	:	:	- : :
: Synthe	tic and	Alt	ernate	Fuels	; (pa;	ge 56))	:	:	:	:	:	:	:	:	:	:
:/ 6.	1 .6.	Z. ,	6.3	/ :	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	-	:	:	:	:	:	1	:	:	:	:	:	:	:	:	:	: :
:Self-C	leaning	g Air	Filter	c (SCA	(F)	page 5	(4)	:	:	:	:	:	:	:	:	:	: :
:/		6	.3] :	:	:	:	:	:	:	:	:	:	:

MOBILITY

FY83:	: : :FY85:	:FY87:	:FY89:	:FY91:	:F	Y93:	:FY95:	:FY97	::FY9	9:	:FYO
<u>:</u> _				<u> </u>			<u> </u>			ـــنــ	
	7 : ::12	A 2 DRADUGE	: :	: :	:	:	: :	:	: :	:	:
/	PIP	A2 PRODUCT	100					•		•	:
		-V PRODUCT	TON			:	: :	•	• •	:	•
•	-/ <u></u>	-V I RODUUI	1011	• •				:		:	:
:	: :	•		•		•	: :	•	: :	•	
NBC Rea	istant Tra	ck & Susper	naion (pag	e 54) :		:	: :	:	: :	:	
6.21	6.3):		:	•	;	:	: :	:	:
	: ;	~ ; 	 :	: :	:	:	: :	:	: :	:	:
Fluidic	Damper (p	age 48)	: :	: :	:	:	: :	:	: :	:	:
	3a :	: :	: :	; :	:	:	: :	:	: :	:	:
:	: :	: :	: :	: :	:	:	: :	:	: :	:	:
ow Cos	r Land Nav	igation (p	age 52)	: :	:	:	: :	:	: ;	:	:
6.2/	6.30	<u></u>	: ;	: :	: :	:	: :	:	: :	:	:
:	: :	_: : _.	: :	: :	:	:	: :	:	: :	:	:
rack F	lubber Deve		age 56)	: :	: :	:	: :	:	: :	:	:
	6.7	<u>, </u>	:	: :	:	:	: :	:	:	:	:
. :		: :	: :	: :	: :	. :		:	: :		•
	tal Positi	on and Att	itude Subs	iyatem (p	age 20	<u>ረ</u> ፣				:	•
<u></u>	<u> Z</u>	: :		: ;		•				•	•
है। एक्टिक्ट नी है द	: Heading R	uforonce (nage (8)			•		:	:	÷	:
LINTUIC		ererence (page 407	: :		•	• •	•	•	:	:
	6.2	- /; :	• •			•	• •	-		:	
Hieb M o	bility Ene	rev Effici	ent System	n (page 5	(0)		: 1	:	: :	:	:
:	:/	6.3a	<u>/:</u>	: :	:	:	: :	:	: :	:	:
:	., —	: :	· ·	: ;	: :	:	: :	1	: :	:	:
Advance	d Composit	e Material	s (page 4)	2): :	: :	:	: :	:	: :	:	:
/	6.2.			: :	: :	:	: :	:	: :	2	:
:	: :	: :	::	: :	: :	:	: :	:	: :	:	:
river	Thermal V	'iewer (pag	e 48) :	: :	: :	:	: :	:	: :	:	:
6.4	؛ الإ	: :	: :	: :	: :	:	: :	:	: :	:	:
:	 : :	: :	: :	: :	: :	:	: :	:	: :	:	:
•	: :	: :	: :	: :	: :	•	: :	;	: :	:	:

MII3AZ PRODUCTION	FY83:	: : :FY85:	: : :FY87:	: :FY8	: 9:	: :FY91	:	: :FY93	:	: :FY95	: :	: :FY97	:	: :FY9	‡	: :FYO
MII3A2 PRODUCTION	:			:	:	:	:	:	:		:			:		2
PIP : :/ FIST-V PRODUCTION /: : :/ FIST-V PRODUCTION /: : : : : : : : : : : : : : : : : : :	:	: :			:	:	:	:	:	:	:		:	:		<u> </u>
PIP : :/ FIST-V PRODUCTION /: : :/ FIST-V PRODUCTION /: : : : : : : : : : : : : : : : : : :	/	7 m113	A2 PRODUC	TION	:	:	:	:	:	:	:	:	:	:	:	:
Advanced Tactical Power Sources (page 44) 6.2 / 6.36 Crack Retention & Control (page 56) 6.2 / 6.3 a Advanced Track & Suspension Materials/Structures (page 44) (ATO/Foreign Track Analysis (page 52) 6.2 Al Abrams/M60 Track Improvement (page 52) 6.3 a Development of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48)		PIP			/:	1	•	:	:	:	:	:	:	:	:	:
Grack Retention & Control (page 56) Grack Retention & Control (page 52) Grack Retention & Control (page 54) Grack Retention & Control (page 52) Grack Reten	:	:/ FIST	-V PRODUC	TION	/:	:	:	±	:	1	:	:	1	:	:	:
Grack Retention & Control (page 56) Grack Retention & Control (page 52) Grack Retention & Control (page 54) Grack Retention & Control (page 52) Grack Reten	:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
G-Z / G.3b Grack Retention & Control (page 56) G-Z / G.3a GATO/Foreign Track Analysis (page 52) G.Z Abrams/M60 Track Improvement (page 52) G.3a Control (page 52) G.Z Control (page 48)	:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
Track Retention & Control (page 56) 6.7 6.3 a Advanced Track & Suspension Materials/Structures (page 44) 6.3 a AATO/Foreign Track Analysis (page 52) 6.2 Al Abrams/M60 Track Improvement (page 52) 6.3 a Development of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48)	dvance	d Tactical	Power So	urces (page 4	4)	:	:	:	:	:	:	:	:	:	:
dvanced Track & Suspension Materials/Structures (page 44): G3a MATO/Foreign Track Analysis (page 52): G.Z Al Abrams/M60 Track Improvement (page 52): G.3a Development of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): G.2	6.2	/ 6.3	b):	:	:	:	:	:	*	2	:	:	:	:	2	:
dvanced Track & Suspension Materials/Structures (page 44): G.3a ATO/Foreign Track Analysis (page 52): G.2 All Abrams/M60 Track Improvement (page 52): G.3a Levelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): G.2	:	: :	: :		:	:	:	:	:	:	:	:	:	:	:	:
dvanced Track & Suspension Materials/Structures (page 44) G.3 a ATO/Foreign Track Analysis (page 52) G.Z ATO/Foreign Track Improvement (page 52) G.Z evelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48)			Control	(page 5	6)	:	:	:	:	:	:	:	:	•	:	:
IATO/Foreign Track Analysis (page 52): G.Z II Abrams/M60 Track Improvement (page 52): G.3a Sevelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): G.2	6.21 (6.3a 1:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
IATO/Foreign Track Analysis (page 52): G.Z II Abrams/M60 Track Improvement (page 52): G.3a Sevelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): G.2		:	: :	:		:	:	:	:	:	:	:	:	:	:	:
ATO/Foreign Track Analysis (page 52): 6.2 Abrams/M60 Track Improvement (page 52): 6.3a Evelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): 6.2	dvance	d Track &			iala/S	truct	ures	(page	44)	:	;	:	:	:	:	:
6.2 Il Abrama/M60 Track Improvement (page 52): 6.3a Sevelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): 6.2	:	:/	<u>6.30.</u>		,/:	:	:	:	:	:	:	:	:	:	:	:
6.2 Il Abrama/M60 Track Improvement (page 52): 6.3a Sevelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48): 6.2		: _:		, :	:	:	:	:	:	:	:	:	:	:	• .	:
Il Abrams/M60 Track Improvement (page 52) 6.3a Sevelopment of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48) 6.2	-	reign Trac	k Analysi	s (page	52)	<u> </u>	<u>:</u>	<u>: </u>	:	:	:	<u>:</u>	<u>: </u>	<u>: </u>	<u></u> _	<u>:</u>
11 Abrams/M60 Track Improvement (page 52) : : : : : : : : : : : : : : : : : : :							6.Z		,							
6.3a :	11 Absa			omone (5	2)						:		:	:	•
Development of Noise Reduction Techniques for Light Armored Tracked Vehicles (page 48)			ck Improv	ement (bage).	•	•		•	•			:	:		:
6.2	<u>6.3a</u>	- <i>'</i> : :	: :	:	:	:	:	:	:		•	:	•	•	•	•
6.2	evelon	ment of No	iae Reduc	tion Te	chniau	• ea for	r liel	• ht Ar	morad	Track	rad V	chiol	(_	*		:
	- Crop	6 2	-	•	•	•	• •	•	•			,		age.	•	:
	 :				:	:	:	•	:	1		•	•	:	:	:
	:	1 1		:	:	:	:	1	•	:		:	•	:		:
	:	: :	: :	:	:	:	:	•	:	:	:	:	<u>.</u>	:	•	•
	:	: :	: :	:	:	:	:	:	:	:	:	•	:	:	•	:
	:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	: :	: :	:	:	:	:	:	<u>:</u>	: :	;	:	:	:	:	•
	:	: :	: :	:	:	•	:	:	:	: :	:	:	:	:	:	:
	:	: :	: :	:	:	:	:	:	•	: :	:	:	:	:	:	:
	:	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:	:
	:	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:	:
				•		•	•	•			,				•	

SENSING :FY97: :FY85: :FY87: :FY89: :FY91: :FY93: :FY95: :FY99: :FYO1: M113A2 PRODUCTION PIP :Acoustic Sensors (page 60) :Target Background Signature and Environments (page 78): 6.2 :Chemical Alarm Tech (page 66): :ADDEV of Automatic Liquid Agent Detector, XM85, XM86 (page 60) : (6.36/ 6.4 :Flat Panel EL Displays (page 70) : :Multi-Sensor Air Defense Acquisition (page 74) : [6.2]: : : : : : ; : : : : : :Improved Non-Standard Condition Sensors (page 70): <u>6.7</u> /: : : : : : : Elevated Target Acquisition Sensor System (ETAS) (page 68) : 6.30 :XM22 Automatic Chemical Agent Alarm (ACADA) (page 79a): 6.2 / 6.4 /:

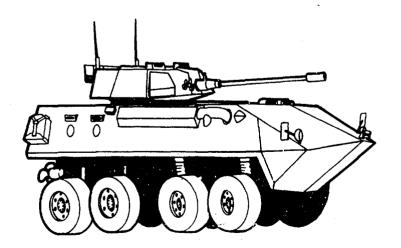
mu 0.2 -	: :	. 79107	:	:	: :FY91	:	: : : : : : : : : : : : : : : : : : :		. TWO E :	:	:	:	:	
FY83:	:FY85:	:FY87:	:FY8	9:	: 1791		:FY93:		:FY95:	:FY97		:FY99	-	:FY01
<u></u>						: -	:		}		!	-	:	÷
, 	7 mila	A2 PRODUCT	TION	•	:	:	:		: :	•	•	•		:
7	PIP		-	/:	:	:	:		: :	-	:	:	:	:
		-V PRODUCT	ION	/:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	•	:	:	: :	:	: :	:	:	:	:	:
:	: :	: :	1	:	:	:	:	:	: :	:	:	:	:	:
	Dynamics	Sensor (pa	age 79a	:():	:	:	:	:	: :	:	:	:	:	:
6.21:	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:
	En vi rom aent	Active R	? Seeke	r Test	Bed	(page	74)	!	: :	:	:	:	:	:
6.Z t.	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:
:	: :	: , :	:	:	:	:	:	!	: :	:	:	:	:	:
cquisi	tion Subsy	stem (page	. 60)	<u>:</u>	<u>:</u>	<u>: </u>	: :	<u> </u>	<u> </u>	:	<u> </u>	<u>:</u>	<u>:</u>	<u>:</u>
						6.2						-		
uiat D	: : Radar for A	i i Ta Da Faria	. (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7/1	:	ř *			: :	•	:	:	:	:
6.Z/			: \ page	• 14)	:	•	•	•		•	•	•		•
0.21	<u> 6.3 a</u>	 :	:	•	:	•	•	•	: :	:			:	•
amage.	Assessment	Concepts	(nave	66)	•	•	•	•	: :	;	•	:	:	•
6.2		: :	` Puge	:	:	• •	:			•	• •	•	•	•
		: :	:	:	:	:	:		: :	-	:	:	:	:
ynamic	Muzzle Se	neing (pag	ge 68)	:	:	:	:		: :	:	:	:	:	:
6.2	<u></u>	: :	:	:	:	:	: :	;	: :	:	:	:	:	:
:	:	: :	:	:	:	:	:	:	: :	:	:	:	:	:
-14 Mi	cron IRDA	(page 60)	:	:	:	<u>:</u>	: :	:	: :	:	:	:	:	:
:/-	6.7. 1:	: :	:	:	:	:	: :	;	: :	:	:	:	:	:
: -	 :	: :	:	:	:	:	: :	;	: :	:	:	:	:	:
river	s Thermal	Viewer (pa	age 68)	:	:	:	: :	:	: :	:	:	:	:	:
6.4	<i>]</i> ; ;	: :	:	:	:	:	: :	1	: :	:	:	:	:	:
•	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	:	:	:	:	: :	;	: :	:	:	:	:	:
:	: :	: :	:	:	:	:	: :	;	: :	:	:	:	:	:
:	: :	: :	:	:	:	:	:	1	: :	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	2	•	•	•								

: Y83:	: :FY85:	: :FY87:	: :FY89:	: : FY	: 91:	: ;FY93	:	: FY95	: :1	: ?Y97:	: :FY	: 99:	: :FY0
:	: :	: :	: :	:	:	;	:	:	:	:	:	:	:
:	: :	: :		:		•	:	: :	:				
	7 M113	A2 PRODUCT	ION :	:	:	:	:	: :	: :	:	:	:	:
	PIP		/:	:	:	:	:	: :	:	:	:	:	:
:	:/ FIST	-V PRODUCT	TON /:	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	: :	:	:	:	:	:
nermal	Weapon Si	ght (page	79a) :	:	:	*	:	: :	:	:	:	:	:
5.3b/	6.4	_/: :	: :	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	: :	:	;	:	:	:
		R Tunable	Lasers (page 72):	;	:	: :	:	:	:	:	:
6.2			_/: :	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	• :	:	:	;	:	: :	:	:	:	:	:
rototy		Sensor Sy	stem (pa	ge 76)	:	:	:	: :	: :	:	:	:	:
	6.3			/:	4	:	:	: :	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	: :	:	:	:	:	:
OCEBE	ore tor Co	mmon Modul	e FLIRS	(page 7	6)	:	:	: :	:	:	:	:	:
	/:	: :	: :	:	:	:	:	: :	:	:	:	:	:
	• •		: :	:	:	•	:	: ; :	:	:	:	:	:
ilti-I		ser Module	Target A	Acquisi	tion	and Eng	ageme	ent (pa	ige 74	;	:	:	:
-	6.2		_/: :	:	:	:		: :	:	:	:	:	:
:		: :	: :	, :	:	:	:	: :	:	:	:	:	:
TRUE /	ision Auto	Sensor De	velcpmen	t (page	74)	<u></u>	┶	نسسن	:		حند		
6.2	6.3a /									-		-	/
. :	: ;		•		:	:	:	: :	:	:	:	:	:
		Acquisitio	n (page t	54):	:	:	:	: :	:	:	:	:	:
6.3	_/:	: :	: :	:	:	:	:	: :	:	:	:	:	:
	: :	• • • •			:_	,	:	.: :	:	:	:	:	:
avance	d Ground t	o Ground 1	arget Acc	quieiti	on Ra	dar (pa	ge 62	2) :	: :	:	:	:	:
			- /: :	:	I	:	:	: :	:	:	:	:	:
<u> </u>	3a /:	: :	: :	:	:	:	:	: :	•	*	:	:	:
:	: :	: :	: :	:	:	:	:	: :	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	: :	: 2	:	:	:	:
:	: :	: :	: :	:	:	:	;	: :	:	:	:	:	:

SUPPORT :FY93: :FY95: :FY97: :FY99: :FY01: :FY89: :FY91: :FY83: :FY85: :FY87: M113A2 PRODUCTION PIP FIST-V PRODUCTION :Advanced Main-Tank Integration Studies (page 80) : TBD /: :NBC Decontamination (page 82): ٠: :Combat Refueling (page 80) : :NBC Recon System (page 82) :Material Handling Equipment & Supply Distribution (page 82): 6.7 :Microclimate Conditioning System (page 82) : TBD /:

The same of the sa

																			_
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: 1	Y83:	:FY8	5:	:FY87	' :	:FY89	:	:FY91	:	:FY93	:	:FY95	:	:FY97	:	:FY99	:	:FY01	:
÷	 -	<u>.</u>				:	:	!	!	: -	<u></u> -	:	 -	-	<u>. </u>	 -	<u>:</u> -		÷
• /		•	4113A2	PROI	•	N.	:	•	•	•	•	• •	•	:	• •	:	• •	:	:
1			PIP	1 1.01	700110	" —-	•	:	:	:	:	:	;		:	:	<u>.</u>	:	:
	:-	:/ 1	FIST-	PROT	UCTIO	N /	•	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	$\overline{\cdot}$:	:	:	;	:	:	:	:	:	•	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:0	ombat V		e Envi	ronme	ental	Suppo	rt Sy	stems	(pag	e 88)	:	:	:	:	:	•	:	: :	:
:/_	6.	30		<i>f</i> :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:,	: Collecti	; D	:	ion Ma	:	: .1 (~.	:	:	:	:	:	:	:			:	:	•	:
	6.36		·	LOIL FLA		rr (ba	ige oo	•			•	•	•	•	•	•	•	•	•
• • •	<u> </u>	<i>-</i> /;	:	•	:	•	•	:	:	•	•	•	•	:	:	:	•	•	:
:1	BC Tech	เทอใจชา	y (pag	ze 96)):	:	:	:	:	:	:	:	:	:		:	:	- :	:
:/		6.2):	:	:	:	:	:	:	:	;	<u> </u>	:	:	•	:
:	-:	:	:	:	:	:	<u>:</u>	:	:	•	,	:	:	:	:	:	:	:	:
: \	ehicle	Harder	ning ((Traci	and	Suspe	nsion	ı) (paa	ge 10	0)	:	:	:	:	=	:	:	:	:
:/,	6.3	A	7-	:	:	:	:	:	:	2	:	:	:	:	:	:	:	:	:
:			:	_ :	1	:	•	:	:	:	:	:	:	:	:	:	:	:	:
: 5	tandard			suppre	88101	Comp	onent	ry (p	sge y	8)	:	:	:	: :	:	:	:	: ;	-
:/,		6.3	<u>a</u>			<i>/</i> :	:	:	:	:	:	:	:			.	:	:	:
• 4	: Idvanced	: L Cauns	: carmai	i Nauro	: /Vobi	i ila 1	intear	·ated	: Nafan	i ee Su	i etem	i (nege	: 86)	•	•	•	•	•	•
:/	dvanced	6.3		2001 (57 VCII.):	inceg.	:	1	:	:	:	:	:	•	:	:	:	:
:		<u> </u>		=	 -	, · :	:	:	:	1	:	:	:	:	- -	:	:	:	:
:1	ficrocl:	imate (Condi	tioni	ng Sye	stem (page	96)	:	:	:	:	:	:	:	:	:	:	:
	6,36/	6.4] /:	:	:	:	:	:	:	:	;	:	:	:	:	•	2	:
:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	1	:	:	:	:	I	:	:	:	1	:	:	•	:	•	:	ř
:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	፡
:	•	•	•	•			•	•	:		•	•			•	•			•
•	•	•	•	•	•	•	•	:	:	:	:	•	•	•	•	•	•	•	:
:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	1	:	:	:	:	:	:	:	:	:	1	:	:	:	•	:


:	: :		:	:	:	:		:	:	:	:	:	: :	:
FY83:	:FY85:	:FY87:	:FY	19:	:FY9	1:	:FY93	_	:FY9	5:	:FY97	:	:FY99:	:FY01
				-		 -		÷		÷		÷		
,	7 i wii	3A2 PRODUC	TION	•	•	•	:	:	•	•	•			•
/	PIP	JAZ FRODUC	LION	·,:		•	•	:	•	•	•			•
سبسب		T-V PRODUC	TION	<i>!</i> :		:	•	•	•		•	•	• •	•
•	1 F13	I-V I KODOC	1101	<i>.</i> .	•	:	•	:	•	:	•	:	: :	•
:	• •	• •	:	•	•	:	•	:	•	:	•	:	: :	•
Pagaine	. Countary	easures (p	.aa 96`	•	:	:	:	:	:	:	:	:	: :	;
	. 2	casores ()	ige jo.	•	•	•	-	:	:	•	•	•	• •	:
' 		 ': :	:	•	:	:	:	:	:	:	:	:	: :	:
Sacura	Lighting	(nama 98)	:	•	:	:	:	:	:	:	:	:	: :	•
	.7 /:	(page 30)	:	:	:	:		:	:	:	:	:	: :	:
	``` ':	: :	•	:	:	:	•	:	:	:	•	:	: :	:
Direct	Francy Ro	am Reducti	an (na	. 02	٠.	•	•	•	•	•	•	•		•
Trect		am Reducer	on (բաղ	5C 7Z	<i>'</i> :	:	•	•	•	•	•	•	: :	•
′	6.3a	 /:		:	:	:	•	:	:	:	•	:	: :	•
Arm.r T	i . Nava Lanman	t and Demo	Drage					•	•	•	•	•		:
711001 1		t and being	riogia	an (þ	aRe or		:	:	•	:	:	:	•	:
' -	6.3a	 J:	•	•	•	:	•	•	:	•	•	•	•	:
YW22 A.	.tomotio C	hemical Al	arm Aa	· (2000	03)	•		:	•	•	:		:
1 112					hage 1	.02)	•	:	•	•		:	• •	-
' 	6.36	1 6.4	一 ':	•	•	:	:	:	•	•	•	:		•
STINCD	V Combat	Vehicle S	alf Dr.	.taat	ino (0	ven)	(98)	:	:	•	:	: :	:
6.3		AEUTOTE D				, 10 F	(page	•	•	:	:	•	: :	•
<u></u>	6.4	 ;:	:	:	:	:	:	:	:	:	•	:	• •	•
Face Me		t Vehicle	Craumai		Dags 0	12)	:	:	:	:	•			•
6.4 1:	isk, comba	· venicie	orewina.		Page ,	•	•	:	-	:	•	:	• •	•
6.7 /-	: :		:	•	:	:	•	:	:	•	•	•		•
Tachny	nou Basa	Efforts in	Infra	ad C	craeni	no (nege 10	'n.	•		•	•		:
i echno.			, THEFE				hake 10	•	•	:	•	:		:
' -	6.7	 :	:	:	:	:	•	•	:	:	•	:		•
:	: :		:	:	:	:	:		•		•	:		:
:	• •		:	:	:	:	•	:	•	:	:	:		• :
•			•	:	•	:	•		:	•			• •	, •
:			:	:	:	:	•	:	:	•	•	:		
•			•	•	•	•		÷	•		:	•	: :	=

:				;	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: 11	783:	:FY8	: c	:FY87	' :	:FY89	:	:FY91	:	:FY93	:	:FY95	:	:FY97	:	:FY99		:FY01	:
<u>-</u>		-;		 -	 -	÷		:	: -	 -			÷~~		:			:	:
.,-		• •	M113A	2 PROD	Morto	1 N	:	:	:	:	:	:	:	:		•		•	:
7			PIP	Littor		/ /	•	:	:	•	•	:	•	•	•	•		<u>.</u>	•
		:/-	FIST-	V PROD	UCT 10	N/	:	:	:	:	:	:	:	:	•	•		:	:
:	:		:	:	:		:	:	:	:	:	:	:	:	•	- : :	<u>.</u>	•	•
:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	<u>.</u>	:	:
:Te	chnolo	gy Ba	se Ef	forts	on Mi	ılti-S	pectr	al Sc	reeni	ng (p	age 1	00)	1	:	:	: :	:	: :	:
٠į		6.2			<i>)</i> :	:	:	:	:	:	:	:	:	:	:	•	:	:	:
: '	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:Ir	ntegrat	ed CV	C Clo	thing	Syste	em (pa	ge 94)	:	:	:	:	:	:	:	:	:	:	:
:	:	: <i>[</i>	6.:	3 b	T = 0	4.4		12	:	1	:	1	:	:	:	: ;	;	2	:
:	:	: "	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	lmet,	Compa	tíble	, Comm	unica	ition/	Aural	Prot	ectiv	e Sys	tem (page	94)	:	2	: :	:	: ;	:
:/_	6.4	<i>)</i> :	:	:	:	:	:	:	:	:	:	:	:	:	:	: ;	;	:	:
:	-:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:
:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	<u> </u>	<u> </u>	=	1	Ź	•	1	•	•	!	:	•	!	•	•
:	:	:	:		1	:	:	:	2	:	:	•	2	:	=	:	:	:	
:	:	:	:	•	:	:	:	:	:	:	:	:	:	2	:	1 :	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: 1		:	ż
:	:	:	:	:	:	:	:	7	:	:	:	:	:	:	:	:		:	:
:	1	:	:	:	:		:	:	:	:	:	:	:	:	:	:		:	:
		:	:		:				:	:		:	-	:	:	:		:	:
•	•	•	•	:	ř				•	•									:
:	•	:		•								:							:
•	•	•		•	•	•		•	•	•	•	•	•		•	, -			:
:	•	:	•					:	•			•			:				:
:	:	:	:	:	:	:	:	:	:	:	:	•	:	•		•	•		•
:	:	•	:	;	:	:		:	:	:	•			•			•	• .	۰
•	:	:	•	•	•	:	:	•		:	•	•	:	:	•			•	•
•	•	•	•	•	•	•	•	•	•		•	•	•	:	•	•	•	•	ė
•	•	•	:	•			•	•	•	•	:	•	•	•	•	•	,	•	•
:	•	:	:	i	:	:	:	•	<u>.</u>	:	:	:	:	•	•	•	• !	•	:
•	-	-	-	-	-	-	-	-	•	=	-	-	-	-	•	-	•	•	ď

LIGHT ARMORED VEHICLE

The family of combat Vehicles designated as the Light Armored Vehicle (LAV) improve the operational capability of both the Marine Corps and the Army. The LAV family of vehicles provides a significant improvement in strategic and tactical mobility/transportability over the present heavier systems. The vehicles provide protection against small arms fire and possess amphibious capability.

The most prevalent member of the LAV family is the LAV-25 mounting a stabilized medium caliber main gun and three complementary armament systems. The LAV family includes other vehicles to fulfill the following mission roles: Anti-Tank, Maintenance/Recovery, Command and Control, Logistics and Mortar Carrier. All members of the LAV family utilized the same power plant, drive train and suspension components for logistic commonality.

 c_{31}

: : : : :	+	:	: :	:	:	: :		: :	:	
:FY83: :FY85: :F	FY87:	FY89:	:FY91:	:FY	33:	:FY95:	÷ £ 1 7 7	. : r	¥99:	:FY01:
					<u> </u>	: :				
	:	: :	: :	:	:	: :	:	: :	:	: :
: :/LAV-25 (USMC)	7:::	: :	: :	:	:	: :	:	: :	:	: :
: /LAV-25 (USA)		: :	: :	:	:	: :	:	: :	:	: :
: : : : :	: :	: :	: :	:	:	: :	:	:	:	: :
	:	: ;	: :	:	:	: :	:	: :	:	
:Low Cost Land Navigat	tion (page	10):	: :	:	:	: :	ì		•	
1/ 6.7 / 6.3 m/	•			•	•		•		•	: :
:Low Phase Noise Cryst	ral Oscili	lator (раде 10):	:	:	: :	:		:	: :
: 6.2 6.36		:	: :	:	:	: :	:	: :	:	: :
	:	: :	: :	:	:	: :	:	: :	:	: :
:Handheld Encryption &	and Auther	nticati	on Device	(page l	3):	: :	:	: :	:	: :
:/ 6.36 /: :	1	: :	; :	:	•	:	:	: :	:	: :
	:	: :	: :		:	: :	:	: :	:	: :
:Power Sources/Advance	ed Tactic	al Powe	r Sources	(page	(2)	: :	:	: :	:	: :
1 6.2 1 6.3b	^{/2} .	: :	: :	. :			•		•	
:Vehicular Intercommun	nication :	 Svatem	(nage 16)	•	•	: :	•	: :	•	
: 6.36/6.4:	:	: :	: :		:	: :	:	: :	•	: :
1 2 2 1	:	:	: :	:	:	: :	:	: :	2	: :
:Single Channel Ground	d and Airl	borne R	adio Sube	ystem (SINCGA	RS) (pa	ge 14)	: :	:	: :
:/ 6.36 : : :	:	: :	: :		:	: :	:	: :	:	: :
: : : :		: :	; ;	:	:	: :	:	: :	;	: :
: SOS Frequency Synthes	aizer (pa	ge 14)	: :	:	:	: :	:	: :	:	: :
: <u>C.Z 6.3a</u> :	:	: :	: :	:	:	: :	:	: :	:	: :
:VHSIC Phase 2 Chip Se	at (page	16) •	• •		•	• •	•		:	• •
1 6.3a /	t (Page	: :	: :		•	: :	:		÷	: :
/	:	: :		:	:	: :	•	: :	:	: :
:VHSIC Phase 1 Chip Se	et (page :	16) :	: :	:	:	: :	:	: :	:	: :
4 6.3a 1: :	:	: :	: :	: :	:	: :	2	: :	:	: :
: : : :		: :	: :	:	:	: :	:	: :	:	: :
:Tactical Power Suppl:					<u>:</u>	<u>: : : : : : : : : : : : : : : : : : : </u>	<u> </u>	 -	:-	_ ,:
1/	16.	3a /	6.3	<u>b</u>		.L	<u>-</u>	6.4		/;

 c_{31}

1	: :	:	:	1	:	. 7710 1	:	•		: FY95:	:	FY97	:	: :FY99	:	: :FYO)
FY83:	:FY85:	:FY87	':	:FY89		;FY91:		:FY93:	:	: 1495:	:	FY9/		: 1199	:	
_	- -	<u> </u>	÷	-	<u>:</u>				<u> </u>		<u></u> ;			 -	:	 -
:	: :	:	•		•	•	•	•	•	: :				:	:	:
:/7.	AV-25 (USI	(C) 7	:	•	•	•	•	•	:	:	•		•	:	:	:
	LAV-25 (1		 -	•	•	•	• <u>•</u>		•	: :			:	:	:	1
	, 201, 22 (:	<u></u> '	•	:		•	:	- !	:	:		:	:	:	ĭ
•	: :	:	:	:	:	:	:	:	:	: :	:		:	:	:	:
daptív	e VHF Rad	io Appli	iaues	for S	INCGA	RS-V □	page	6)	;	: :	:		;	:	:	2
/6.	2 / 6.3a	7:	:	:	:	:	: `	:	:	: :	:		:	:	:	:
:	: :	- :	:	:	:	:	:	: :	:	: :	:		:	:	:	:
00 Wat	t VHF Powe	r Ampl	itier	(page	6)	:	:	:	:	: :	: :		;	:	:	:
6.3a/	: :	2	:	:	:	:	•	:	:	: :	: :	:	:	:	:	:
;	: :	:	:	:	:	:	:	: :	:	: :	: :		:	:	:	:
	for Tech		Inser	cion (page	12)	;	:	:	: :	:		•	:	:	:
	6.2, 6.3	9.	/	':	1	1	:	:	:	: :	:	!	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	: :	: :		:	•	:	;
ight A	rmored Ele	ectronic	≎ Sya1	cem Ça	rı ler	(LAE	SC) (page :	10)	: :	: 2		=	:	;	:
6.3b/	: :	:	:	:	:	:	:	:	:	:	:		:	:	:	:
:	: . :	:	:	:	:	:	:	• , '	:	: :	, ,		:	:	:	:
ingle	Channel O	pjective	e Tac	tical	Termi	nal (SCOTT) (pag	ge 14	• •			-	:	;	:
	6.7		/	:	:	:	:	:	:	:		•	;	:	:	:
	: _ :		t	. / \	1,		:		:							
lat Pa	nel Elect:	rolumin	escen	[(EL)	nrab	IAY (page	0)	:				•	•	•	:
 -			<u>'</u> ــــــــــــــــــــــــــــــــــــ						•				•	•	:	
:	•	•	•					:					•	:	:	:
			:	•		•	•	:	•	•			•	:	4	:
:	: :	•	:	•	:	:	:	:	•	•		,	•	•	•	•
:		:	:	:	•	:	:	:	•	•			•	•	•	•
:	•	:	•	•	•	:	•	•	•	•		<u>'</u>	•	:	•	•
•		:	:	:	:	:	:	:	:	:			:	:	:	:
•		•	:	:	:	•	2	:	•	1			:	:	:	:
:		:	í	ī	:	:	:	:	:	1			:	:	1	:
:	: :	:	•	:	:	:	:	:	:	:		:	:	:	:	:
:	: :	:	•	:	:	:	•	:	:	:		!	:	:	:	:
		-	-	-	-	-	-	-						-		

_		•	-	-		_	n
	н	ĸ	и.	PC	ıw	ю	к

FY83											_					-		
:/LAV-25 (USMC) /: :/LAV-25 (USMC) /: :/6.2 /: :Combat Vehicle Armament System Technology (CVAST) (page 26): :/6.2 /: :Precision Aim Technique (page 41c): :/6.2 / 6.3a /: :Inertial Component Development (ATAADS) (page 36): ://finertial Component Development (ATAADS) (page 36): ://finer	: FY83:	: :FY8	5 :	: :F787	; ;	: :FY89	: :	: :FY91	:	: :FY93		: :FY95		FY97:	:	: :FY99	:	: FYUL:
Light Armored Vehicle Evaluator (page 40) Light Armored Vehicle Evaluator (page 40) Combat Vehicle Armament System Technology (CVAST) (page 26): 6.2 Precision Aim Technique (page 41c): 6.2 Inertial Component Development (ATAADS) (page 36): Improved Non-Standard Condition Sensor (page 36): Vehicle Dynamic Sensor (page 41k):	: :	1	:	•	:	:	:	:	:	:	:	:	: :	:	:	:	:	: :
Light Armored Vehicle Evaluator (page 40) Light Armored Vehicle Evaluator (page 40) Combat Vehicle Armament System Technology (CVAST) (page 26): 6.2 Precision Aim Technique (page 41c): 6.2 Inertial Component Development (ATAADS) (page 36): Improved Non-Standard Condition Sensor (page 36): Vehicle Dynamic Sensor (page 41k):			~;		, .	•	<u> </u>	:	:	:		•		نيـ سيــــــ		:	:	: :
Light Armored Vehicle Evaluator (page 40) Light Armored Vehicle Evaluator (page 40) Combat Vehicle Armament System Technology (CVAST) (page 26): 6.2 Precision Aim Technique (page 41c): 6.2 Inertial Component Development (ATAADS) (page 36): Improved Non-Standard Condition Sensor (page 36): Vehicle Dynamic Sensor (page 41k):				:	:	•	:	•	•	•	•	?		-	•	:	- :	: :
Light Armored Vehicle Evaluator (page 40) Light Armored Vehicle Evaluator (page 40) Combat Vehicle Armament System Technology (CVAST) (page 26): 6.2 Precision Aim Technique (page 41c): 6.2 Inertial Component Development (ATAADS) (page 36): Improved Non-Standard Condition Sensor (page 36): Vehicle Dynamic Sensor (page 41k):	:	1AV-25	CUSMC	`	:	:	•	•	•	•	•	:	•		•	•	<u>.</u>	
Light Armored Vehicle Evaluator (page 40) 6.2	: :	/T AV. 2	5 (116	^	 7	:	•	:	•	:	:	:	: :		:	•	:	•
Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 36): Combat Vehicle Bynamic Sensor (page 41k):	: :	/ LEVE Z	, (08	``	. ′	:	•		•	•	•	•	• •			•	•	: :
Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 36): Combat Vehicle Bynamic Sensor (page 41k):			:	•	•	•	•	•	•		•	•					•	
Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 36): Combat Vehicle Bynamic Sensor (page 41k):	i i		i Walada	-1- F.	• • • 1 · · • •	/-	•	٠,		•		•					•	
Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Armament System Technology (CVAST) (page 26): Combat Vehicle Dynamic Sensor (page 41c): Component Development (ATAADS) (page 36): Component Development (ATAADS) (page 36): Component Development (ATAADS) (page 36): Component Development (Page 36): Component (Page 36	Thight	Armored	veni	CIG EA	ATT IT AT	or (p	age 4	0,	•		•	•				<u>.</u>		
Precision Aim Technique (page 41c): 6.2	:/6.	2_/	:		1	:	:	:	:	:	•	:	: :	1	:	:		:
Precision Aim Technique (page 41c): 6.2	:		•	:	:	:	:	:		:,	:	:	: ;	:	•	:	:	: :
Precision Aim Technique (page 41c): 6.2	Combe			ament	Syste	m Tec	hnolo	gy (C	VAST)	(pag	25)	:	: :	:	:	:	:	: :
Precision Aim Technique (page 41c): 6.2	:	6.	2		/	:	:	:	:	.	:	:	: :	:	:	:	:	: :
Inertial Component Development (ATAADS) (page 36): Improved Non-Standard Condition Sensor (page 36): Improved Non-Standard Condition Sensor (page 36): Vehicle Dynamic Sensor (page 41k):	: :	•	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	: :
Inertial Component Development (ATAADS) (page 36):	:Preci	sion Aim	Tech	nique	(page	41c)	:	:	:	:	:	:	: :	:	:	:	:	: :
6.2	:/	6.2		/ 6.	3a /	:	:	:	:	:	:	:	: :	:	:	:	:	: :
6.2	: :	:	:	;	:	:	:	1	:	:	:	:	: :	:	:	:	:	: :
6.2	:Inert	ial Comp	onent	Devel	lopmer	it (AT	AADS)	(pag	c 36)	:	:	:	: :	:	:	:	:	: :
: i : : : : : : : : : : : : : : : : : :	:/																	7:
:	:	:	:	-:		:	:	:	:	4		:	: :		:	:	:	: :
:	: Impro	ved Non-	Stand	ard Co	onditi	ion Se	nsor	(page	36)	:	•	:	: :	:	:	:	:	: :
: : : : : : : : : : : : : : : : : : :	: /	6.2	7:	:	:	1	:	1	:	:	:	:	1 1			:	:	:
	2		'	•	2	•	•	•	•	•	•	•			•	•	•	•
	.Vehic	le I)vnam	ic Se	raur (กลขอ	41k)	•	•	•	:	•	•			•	•	•	•
					Pubc	•	:	:	:	•	•	:	: :		•		•	:
	: 4	······································		:	:	:	•	:	:	:	•	:	•				•	•
			•	•	:	:	:	•	•		•	•	• •			•	•	•
				•	•	•	•	•	•	•	•	•			•		•	
					•	ř.		:	I .			:					I	
	7	:	:	:	:	;	ī	:	:	:	:	:	: :		:	:	:	:
	:	: :	:	:	:	:	:	:	-	:	:	:	: :	;	:	:	:	:
	:	: :	:	:	:	:	:	:	:	:	:	1	: :	;	:	:	:	:
	: :	: :	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:
	:	: :	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:
	2 ;	: :	:	:	:	:	:	:	:	:	:	:	: :	,	:	:	:	:
	: :	: :	:	:	:	:	:	:	:	:	:	:	: :		:	:	:	:
	;	:	•	:	:	:	1	i	:	•	ź	1	:		:	:	:	•
	•		•	•	•	1	:	•	•	•	•	•	•		•	•	•	•

	: :	: :	: :	: :	: :	: :	: :	: :	:
Y83:	:FY85:	:FY87:	:FY89:	:FY91:	:FY93:	:FY95:	:FY97:	:FY99:	:FY01
		ujuunju		~		~~!~~~! ~~	-		
:	: :	• •	: :	: :			•		;
:/	AV-25 (USM	\mathfrak{I}							•
:	/LAV-25 (US		7::	: :		: :	: :		:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
ombat	Mobility Fo	iels (page	46) :	: :	: :	: :	: :	: :	:
	1, 6.2, 6.3		: :	: :	: :	: :	: :	: :	:
;	; ;	: :	: :	: :	: :	: :	: :	: :	:
ank-A	utomotive Te	ch/Engine	Concepts	for Altern	ate Fuels	(page 56)	: :	: :	:
		6.2		_7: :	: :	: :	: :	: :	:
:	: :	: :	: :	_ : :	: :	: :	: :	: :	:
ransm	ission Compe	onant Deve	lopment (p					<u> </u>	
· · · · · · · · · · · · · · · · · · ·	~~~~~~~			6.3					-
. :	: :	•	: :		•	: :	: :	: :	:
ubric	ante for Cor	ventional	/Non-Conve	entional En	gines (pa	ge 52) :	: :	: :	:
<u> </u>	1, 6.2, 6.	: /سب	4 4	• •	: :	: :	: :	: :	:
i ahial	. Vocina Da	: ; 1	: : "			D al. /		: :	:
enici	e Engine De	/elopment/		cepts for	Alternate	Fuels (pag	(e 58) :	: :	:
		~~~~	6 <u>.3</u>				: :	: :	:
orrae	ion Preventa	ativas (no	. (8)	• •	• •				•
	1, 6,2, 6.3		• • •	: :	: :	• •	: :		i
~~	************	/بسب/	: :		: :	• •			
dvanc:	ed Air Filt	ration (na	ge 42) •	: :	: :	: :		: :	•
		uczon (pu			.2				
	: :			- : - : - :	•	: :			
yuthe	tic and Alte	ernate Fue	la (page 5	6): :	: :	: :			•
	1, 6.2, 6.3		:	: :	: :	: :		•	•
			: :			: :			j
elf-C	leaning Air	Filter (Se	CAF) (page	54) :	: :	: :			•
	6.3			7:	: :				:
		: :			: :	: :	: :		:
			=	•				•	-
:	: :	: :	; ;	: :	: :	: :	: :	: :	•

O

(||

MOBILITY

: FY83:	: : :FY85:	: :: :FY87:	: :FY89:	: : :FY91:	: :FY93:	: :FY9	: 5:	: : :FY97:	: : :FY99:	: :FY01
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	-: :	: :	:	:	: :	: :	-:
: _	<u>: : : : : : : : : : : : : : : : : : : </u>	<u>:</u> _:	: :	: :	: :	:	:	: :	: :	:
: <u>/ī</u>	AV-25 (USM		_::	: :	: :	*	:	: :	: :	:
:	/LAV-25 (US	SA)	7 : :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	:	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
	istant Trac		nsion (pag	e 54) :	: :	:	:	: :	: :	:
6.2/	<u> </u>	.3a	/:	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
	Damper (pa	age 48):	: :	: :	: :	:	:	: :	: :	:
6.	3a/:	: :	: :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
OW COS	t Land Navi	<u>ig</u> ation (p	age 52)	: :	: :	2	:	: :	: :	:
6.2/	6.34	j: :	: :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	2
rack R	ubber Devel	opment (p	age 56):	: :	: :	:	:	: :	: :	:
	6.2			: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
	tal Positio	on and Att	itude Suba	yatemo (pag	ge 50) :	:	:	: :	: :	:
6.	<u>2/:</u>	: :	: :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
luidic	Heading Re	ference (page 48)	: :	: :	:	:	: :	: :	:
	6.2	7: :	: :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:
igh Mo	bili <u>ty Ener</u>	gy Effici	ent System	(page 50)) : :	:	:	: :	: :	:
:	:/	6.3a	/:	: :	: :	:	:	: :	: :	:
:	: :	; ;	: :	: :	: :	:	:	: :	: :	:
<u>ldvance</u>	č Composite	Material	s (page 42)): :	: :	:	:	: :	: :	:
	6.2		7: :	: :	: :	:	:	: :	; ;	:
:	: :	: :	-: :	: :	: :	:	:	: :	: :	:
	Thermal Vi	.ewer (pag	e 48) :	: :	: :	:	;	: :	: :	:
€.4	_/: :	: :	: :	: :	: :	:	:	: :	: :	:
:	: :	: :	: :	; :	: :	:	:	: :	: :	:
:	: :	: :	: :	: :	: :	:	:	: :	: :	:

MOBILITY

		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:FY83:		:FY85	:	:FY87	:	:FY89		:FY91		:FY93	:	:FY95		:FY97		:FY99		:FY01:
<u>::</u>		<u>: </u>	<u>: </u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>: </u>	<u>:</u> -	<u>:</u>	<u></u>	┶	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>		<u></u>
: :		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	, 	بييث	:	<u>:</u>	:	:	<u>:</u>	:	:	:	:	:	:	:		:	:	:
: :	/ LAV	-25 (USMC)	,	<u>. </u>	:	:	:	:	:	:	:	:	1	:	:	:	: :
: :	/ <u>L</u>	AV~ 25	(USA	<u>, </u>	/	:			:	:	:	:	:	:	:	:	:	: :
: :		:	:	:	:	3	:	:	:	:	:	:	:	:	:	:	•	: :
:		•	:	:	:	: ,	: ,	()	:	:	:	:	:	:		:	:	:
Advan	ced	Tacti	Cal P	ower .	Sourc	es (p	age 4	4)	:	:	:	:	:	:	:	:	:	: :
: 6.	2	/	6.3b	/	:	:	:	:		:	:	:	:	:		:		
; ;	D = "	: 	; _ • ~	¥	: 1 (: 56	:	•							•	•	:	
Track	Ket	entio	n a c	onero	ı (pa	ge oo	,	:	•	:	:	:	:	:	:	:	:	
:/6.2/	•••	38 /			:			:			•		•			:		
: Advan		i Transta	· .		i Jan W	i Sakami	10/0	*	•	i (nana	443							
Advan	icea	TEACK	a su	6.3a	LOU PI	ateri	# 18/5	·	utes.	(page	447		•	•				
				<u> </u>		 '				•	:	:	:	:	•	:		•
:NATO/	Fore	· ion T	rack	^ Anal.,	.i. (D000	52)		•	:	:	:	:		:	:	•	
· [ELO]	FOLE	1811 1	Lack	Aunly	010 (Page	12.1		. 6	.2	`	•				<u></u>		` ;
			 -	-	•		<u>-</u>	•		•••••	:	•	:	:	<u> </u>	:	•	 ';
: :	!	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	;	•
;		:	:	•	•	•	•	<u>:</u>	•	:	:	•	•	:	•	:		•
: :		•	•	•	•	•	•	•	•	•	•	•	•	;	•	•	•	•
;		:	•	•	:	•	•	•	•	:	•	-	:	•	:	:	-	•
: :		•	•	•	:	:	:	•	•	:	•	:	:	:	•	:	:	: ;
		:	•	2	•	•	2	•	2	:	:	:	:	•		•	:	•
:		:	:	•	•	:	:	•	•	:	•	•	:	•	•	•	:	:
: :	!	•	:	•	:	•	:	:	2	:	:	:	•	:	•	:	•	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:
:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	1	:	:	: :
: :		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	•	1	:	1	:	:	:	:	:	:	:	:	:	
: :		:	:	2	:	:	1	:	:	:	:	2	:	:	:	:	:	:
: :		:	•	•	2	•	•	•	•	•	•	•	•	•	•	•	•	•

SENSING

FY83:	: :FY85:	: : :FY87:	: : :FY89:	: :FY9]	:	: :FY93	:	: :FY9	: 5 :	: :FY97	:	: :FY99	:	: :FY01
:	: :	: :		:	:	:	:	:	· :		:	:	:	:
				 :	:		 -		- -		 -			:
:	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:
:/ĩ	AV-25 (USM	(i) 7 :	: :	:	:	:	:	:	:	:	:	:	:	:
:	/LAV-25 (U	SA)	7::	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	• : :	:	:	:	:	:	2	:	:	:	:	:
2	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:
Acoustí	c Sensors	(page 60)	: :	:	:	:	:	:	:	:	:	:	:	:
	<u> </u>	: :	: :	:	:	:	:	:	:	:	:	:	:	:
:	- :::	: :	: :	:	:	:	:	:	:	:	:	:	:	:
Target	Background	Signature	and Env	ironment	e (pa	ge 78)	:	:	:	:	:	:	:	:
/	6.2		_7: :	:	:	:	:	:	:	:	:	:	:	•
:	: :	: :	: :	:	:	:	:	:	:	:	:	*	:	:
Chemice	l Alarm Te	ch (page 6	<u>:6)</u> : :	:	:	:	:	:	:	:	:	:	:	:
/	6.2		_/: :	:	:	:	:	:	•	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:
	f Automati	<u>c_</u> Líquid <i>l</i>	Agent Det	ector, XI	185,	XM86 (page	60)	:	:	:	:	:	:
/6.3b/	6.4	<i>J</i> : :	: :	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:
Flat Pa	nel EL Die	plays (par	<u>32</u> 70) :	:	1	:	:	:	:	:	:	:	:	1
<u>/</u>		·	_/: :	:	:	:	1	:	:	:	*	:	:	:
:	: :	: :	: :	. :	•	:	:	:	:	:	:	:	:	:
	ensor Air	Defense Ad	equisitio	n (page :	74)	:	:	:	\$:	:	:	:	:
$\frac{1}{6.2}$	<u>'</u> _/: :	: :	: :	:	:	3	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	:	.:	:	:	:	:	:	:	:	:
	d Non-Stan	dard Cond:	ition Sen	sors (pag	ze 70	1):	:	:	:	:	:	:	:	:
/ 6.2	_/: : :	: :	: :	:	:	:	:	:	:	1	:	:	:	:
: .	: :	• •	: :	:	:	:	:	:	:	2	:	:	:	:
Thermal	Wespon Si	ght (page	79a) :	:	:	:	:	:	:	:	:	: .	:	:
(6.3b)	6.4	/ :	: :	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	:	:	:	•	:	:	:	:	:	:
:	: :	: :	:::::::::::::::::::::::::::::::::::::::	:	1	:	:	:	:	:	:	:	:	:
XM22 Au	itomatic Ch			ent Alam	n (AC	(ADA)	page	79a)	:	:	:	:	2	:
	6.2	/6.	/:	:	:	:	:	:	:	:	:	:	:	ŧ
:	: :	: :	: :	:	:	:	;	: .	:	:	:	:	:	•
:	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:

: Y83:	: : :FY85:	: :FY87:	: :FY89	:	: :FY91	:	: :FY93	:	: :FY9	: 5 •	: :FY97	:	: :FY9	:	: :FY0]
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	•	:
<u>;</u> _			~ :		:	<u></u> -			<u>-</u>	 -		÷	~ : -	÷	~ :
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:/Î	AV-25 (UCM	o 7:	:	:	:	:	:	:	:	:	:	:	:	:	2
:	/LAV-25 (U	SA)	7 :	:	:	•	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
alpli,	Line UV-FI	R_Tunable	Lasers	(page	72)	:	:	:	:	:	:	:	:	:	:
6.2			7:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :		- :	:	:	:	:	:	:	:	:	:	:	:	:
ototy	pe Robotic	Sensor Sy	stem (p	age 7	6)	:	:	:	:	:	:	:	:	:	:
	6.3a			/	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
осевв	ors for Co	mmon Modul	e FLIRS	(pag	e 76)	:	:	:	•	:	:	:	:	:	. :
		: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	i	:	1	:	:	:	:	:	:	<u>:</u>	±	:
ılti-F	unction La	er Module	Target	Acqu	isiti	on an	d Eng	ageme	nt (page	74)	:	:	:	:
	6.2		7:	:	:	:	:	:	:	:	:	:	:	:	:
:	: ;	: :	-:	:	:	:	:	:	:	:	:	:	:	:	:
<u>ight V</u>	ision Auto	Sensor De	velopme	nt. (p	age 7	4)	:	<u>:</u>	:		:	: _	:	:	
6.2,	6.3a /														/
;	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
itomat	ic Target	A cquisitio	n (page	•.4)	:	2	:	:	:	:	:	•	:	:	:
6.3a	/:: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
dvance	d Ground L	o Ground T	arget A	e iupo.	itíon	Rada	r (pa	ge 52	:)	1	:	:	:	:	:
			_/:	:	:	2	:	:	:	:	:	:	:	:	:
6.3	a/	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	;	:	:	:	1
ehicle	Dynamics	Sensor (pa	ge 79 a)	:	:	:	:	:	:	:	:	:	:	:	:
5.2/	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
	nvironment	Active RF	Secker	Test	Bed	(page	74)	:	:	:	:	:	:	:	:
5.27	: :	: :	:	:	:	:	:	:	:	t	:	:	:	:	:
-:	: :	: :	:	:	:	:	:	2	:	:	:	:	:	:	:
•					_		_			_			_	_	

 \bigcirc

:	: :	: :	:	. :	:	:		:	:	.:	:	:	:	:	:
FY83:	:FY85:	:FY87:	:FY8	9:	:FY91	:	:FY93	:	:FY9	5:	:FY9	7:	:FY9	9:	:FY01
		<u> </u>	<u></u>	 -		<u>. </u>	-	∸	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u>.</u>	ــــــــــــــــــــــــــــــــــــــ
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
بر:	: : of /!!!!		:	:	:	:	:	:		:	:	:	:	:	
	AV-25 (USM		7 .	:	:	:	:	:	:	:	:	:	:	:	:
•	/LAV-25 (U	SA)	/ :	:	•	:	:	:	:	:	:		:	:	
:	: :	: :	•		:	:	:	:	:	:	Ξ.	:	:	:	•
: .		1		:	:	:	:	:	:	:	Ξ.	•	:	:	:
cqu181	tion Subsy	stem (page	60)	<u> </u>	<u>:</u>	<u>: </u>	<u> </u>	≟	<u> </u>	<u> </u>	<u> </u>	<u> </u>		 -	 '
						6.2		,		~~~~					/
: _	: :	, : . :	,:	:	:	:	:	:	:	2	:	:	:	:	:
		<u>ir Defe</u> nse	(page	76)	:	:	:	:	:	:	:	:	:	:	:
6.2/	6.3a	/:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	, :	:	:	:	:	:	:	:	:	:	:	:	:
amage		Concepts	(page	56)	:	:	:	:	:	:	:	:	:	:	:
6.2	_/: :	: :	:	:	:	:	:	:	:	•	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	1	:	:	:	:
		nsing (pag	e 68)	:	:	:	:	:	:	:	:	:	:	:	:
6.2	<u>7</u> : :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	· :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
-14 Mi	cron IRDA	(page 60)	:	:	:	:	:	:	:	:	:	:	:	:	:
	6.2 /:	: :	:	•	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
river'	s Thermal	Viewer (pa	ge 68)	:	:	:	:	:	:	:	:	:	:	:	:
6.4		: :	:	:	:	:	:	•	:	:	:	:	:	:	:
	- : :	: :	:	:	:	:	:	2	:	:	:	•	•	•	1
lodul ar	Sensor As	sembly (pa	re 72)	•	•	•	:	•	•		•	•	•	•	:
•		6.3a	7.	•		•	•		•	•	•	•	:	-	•
•			' -		•			•	:	į.		;	•	:	· ·
nteore	ted Senear	Assembly	(nega	70)	:	•	:	:	:	:	:	:	•	:	:
6.3a			· pugo	•	:	:	:	:	:	:	:	:	:	:	:
	~'. ∶	: :	:	:	:	•	:	:	:	:	:	:	:	:	:
econd	Generation	Focal Pla	na - A	i dvano	ed FLI	· DTo	i chnala	i /	AFT)	; (page	78)	•	•	•	:
6.2	7:	rocal Fla	A	. valic	ea LTT	r 16	cunore	gy (UL T /	(bake	(0)		•	•	
	- 		•		;	:	:	•	•				:	:	•
:	: :	: :	=	:	:	:	:	:	1	;	:	:	:	:	:
	rmored Veh	2 - 1 - T 2	/		701		_		_		_			_	_

SUPPORT

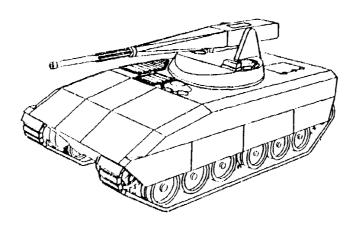
FY83:	: :FY85:	: : :FY87:	: :FY89:	: :FY91	: : : :1	: FY93:	: :F	: 195:	: :FY97	: :	: :FY99	: :	: :FY0]
	: 1	: :	: :		: :	:	:	:	:	:	-	:	:
			: :	:	: :	 :	:	:	 -	:		:	
:	: :	1 1	: :	:	: :	:	*	•	:	:	:	:	:
:/1./	V-25 (USMC	37:	: :	:	: :	:	2	:	:	:	:	:	:
	LAV-25 (US		•	:	: :	:	:	:	:	:	:	:	•
	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	;	: :	:	:	:	:	:	:	:	;
dvance	Main-Tank	k Integrati	on Studie	s (page	: (08	:	:	:	:	:	:	:	:
TBI	5 7:	: :	: :	: `	: :	:	:	:	:	:	:	:	:
		: :	: :	:	: :	:	:	:	:	:	:	:	:
BC Dec	ntaminatio	on (page 82	2): :	:	: :	:	:	:	:	:	•	:	:
	7:	: :	: :	:	: :	:	:	;	;	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
ombat I	Refueling ((page 80)	: :	:	: :	:	:	:	:	:	:	:	:
	7: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	- : :	: :	: :	:	: :	:	÷	•	:	:	:	:	:
BC Rec	on System ((page 82)	: :	:	: :	:	:	:	:	:	:	;	:
6.2/	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
ateria	Handling	Equipment	& Supply	Distrib	oution ((page	82):	:	:	:	:	:	:
	6.2	7 :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
licrocl:	mate Condi	itioning Sy	stem (pag	e 82)	: :	:	:	:	:	:	:	:	:
Tī	3p 7:	: ;	: :	:	: :	:	:	:	:	:	:	:	:
:-	- ;:	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	I	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	;	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: ;	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	2
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
:	: :	: :	: :	:	: :	:	:	:	:	:	:	:	:
•	: :			•					•	•	•	•	•

: 783:	: : :FY85:	: : :FY87:	: :FY89	:):	: :FY91	: : : :	FY93:	: :	: :FY95	: :	: :FY97	:	: :FY9	: 9:	: :FY01	:
<u>:</u>	<u>:</u> :	<u>:</u> :		:	:	: :	;	:	:	:	:	:	:	:	:	:
:	: :	: :	;	:	:	: ;			:	:	:	:	:	;	:	:
٠.,٠		: :	:	:	:	: :	: :	:	:	:	:	:	:	:	:	:
: <u>/1</u>	AV-25 (USMC		~ :	2	:	: :	: :	:	:	:	:	:	:	:	:	;
:	/LAV-25 (US	(A)	/ :	‡	:	: :	: ;	:	:	:	:	1	:	:	:	:
:	: :	: :	:	:	:	: :	:	:	:	:	:	:	:	:	:	:
		: :	. :	:	:	• , •	:	:	:	:	:	:	:	:	:	:
ombat.	Vehicle Env	iromienta.	1 Suppo	ort Sy	stems	(page	88):	:	:	:	:	:	:	:	:	:
	6,3a		:	:	:	: :	: :	•	:	:	:	:	:	:	:	:
		: :		: ^-	: :	: :	:	:	:	;	:	;	:	:	:	:
	ive Protect	ion Mater	rar (be	ige ou	1)	:	:	:	:	:	:	:	:	:	:	:
6.	/	: :	:	:	:	: :		: -	:	:	:	:	:	:	2	:
መር ጥ _ተ	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	: 05).	:	:	:	: :			:	:	:	:	.	:	:	:
oc rec	hnology (pa	ge 967:	7 :			: :			:	•	:	•	:	:	:	:
	6,2		/ :		•			•		•	:	:	:	:	:	:
. 1		· · · · · · · · · · · · · · · · · · ·		•	: 	: ;				-	:	:	:	•		:
	hardening 3a 7:	(ITACK AII	a surpe	uston	i) (pag	se ion			:		•	:		:	•	:
	3a / :	: :	*		•					•			:	•	•	:
and a	dized Fire	Supprasai	an Come	•	. (•	•	•	٠
anua	6.3a	Suppressi	7.	•	· y (p	age 70	,		:	•			•	•	•	:
			' :	:	:	• •			•	•	:		:	•	•	:
dvance	d Counterne	Ecures/Ve	hicla l	ntegr	orad I	Na fana	. S.	stame	· (cao	. 86)	:	:	:	:	•	:
	6.35	unui Caj ve	7.			i .	e oya	, Can 9	· (} aB,	•	•	:	:	:	•	:
•			' ;			•		•	•	•	:	•	;	:	:	:
i eroc	imate Condi	tioning S	vatem (DAGE	96)	•		•	•	•	•	•	:	:	:	;
3.36/	1 !	: :		:	•	•			•		•	•	•	•	:	:
	6.4	: :	:	:	•	: :		- •	•	- •	•	:	•	•	•	:
-			•	:	•	: :		•	:	•	:	:	-	:	•	:
:	: :	: :	:	:	•	: :		•	:	:	•	:	:	•	•	:
:	: :	: :	:	:	:	: :		:	:	:	:	:	:	:	•	:
:	: :	: :	:	:	:	: :	: :	•	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:		:	:		:	:	:	:	:	:
:	: :	: :	:	:	:	: :		:	:	:	:	:	:	:	:	:
				•								•	•	-	-	

1.

()

 ℓ_{1}^{1}


FY83:	: : :FY85:	: FY87:	: :	89:	: :FY91	: :	: :FY9	:	: :FY	:	: : FY		: :FY	:	: :FY01
1100:	: :	; F10/;	:	:	: F171	:	. r 1 7	:	:	,, ;	: :	:	:	,,,	: 101
:	: :	7	:	:	:	:	:	:	:	:	:	•		:	
:	: :	::	: :	:	:	t :	:	:	:	:	:	:	1	:	:
:	LAV-25 (US		:	:	:	:	:	:	:	:	:	:	2	1	:
:	/LAV-25 (USA)	/:	:	:	:	:	:	:	:	;	:	:	:	:
:	: :	: ;	: :	:	:	:	:	:	:	:	:	:	2	:	:
:	: :	:	: ;	. :	:	:	:	:	:	:	:	:	:	:	:
assiv	e Counterm	<u>ea</u> sures ((page 96) :	:	:	:	:	:	:	:	:	:	:	:
	6.2	_/::	: :	:	:	:	•	:	:	:	:	:	:	:	:
:	: :		:	:	:	:	:	:	:	2	:	:	:	:	:
ecure	Lighting	(page 98)	1 1	:	:	:	:	:	:	:	:	:	:	:	:
6	<u>,2</u> /:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :		:	:	1	:	:	:	:	:	:	:	:	:
irect	Energy Be	am Reduct	cion (pe	ge 92	:):	:	:	:	:	:	:	:	:	:	:
	6.3a	/ :	: :	:	:	:	:	:	:	:	1	:	:	:	:
:	. : :	<u> </u>	: :	:	:	:	•	:	:	:	:	:	:	:	:
rmor	Developmen	t and Den	ao Progr	enou (k	age 86)	:	:	:	:	:	:	:	:	ï	:
	6.3a		: :	1	:	:	:	:	:	:	:	:	:	:	:
:	: :		:	•	:	: ;	:	:	:	:	I	:	:	:	:
	utomatic C			ent (page 10	2)	:	:	:	:	:	:	:	:	:
6	.3b	/ 6.4	<u>. </u>	:	1	:	:	:	:	:	:	:	:	:	ì
:	: :		:	:		:	:	;	:	ŧ	:	:	:	:	:
TINGR	AY, Combat	Vehicle	Selt Pr	otect	ion (CV	SP) (page	98)	:	:	:	:	:	:	:
6.3		,:	:	:	;	:	:	:	:	:	:	:	:	:	1
	6.4	_ / :	: :	:	:	:	:	:	:	:	•	:	:	:	:
. :	: :		: :	• • •	:	: ;	:	:	:	:	:	:	:	:	:
	lask, Comba	t Vehicle	e Crewma	u, e (page 92)	:	:	:	:	1	•	:	•	:
6.4/	: :	:	:		:	:	:	•	:	t	:	:	:	:	:
:			: :	:		: , ;	:	:	:	:	:	3	:	:	:
echno	logy Base	Efforts	in Intre	red S	creenin	g (pag	ge I	00)	:	:	:	:	:	2	:
	6,2	/		:	:	:	:	•	:	:	:	•	:	I.	:
	: :	: :	: :	:	:	:	:	:	:	:	:	:	:		
:	: :	: :	:	:	:	•	:	:	•	:	:	3	:	:	:
:	: :	= ;		i	:	:	:	:	;	:	:	:	:	:	:
:	: :	: :	: :	:	1	•	•	:	:	:	:	:	:	:	:

SU	RV	Ť٦	7 A	R	11	I.I	TY

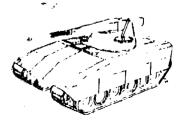
: :FY83:	:	85:	: :FY8	;	: :FY89	:	: :FY91	:	: :FY93	:	: :FY95	:	Y97	 -	: :FY99	:	: :FY01
1 4	1 1	٠,٠	:	:	:	:		:		:	: :		1 > / •	!		•	: :
	:			-			:		:	:	: :	:			:	:	
: :	:	<u>:</u>	:	:	:	:	:	:	:	:	:	: :	:	3	:	2	: :
: :,	/LAV-25	(USM	c) /		:	:	2	:	:	:	:	:	:	:	:	:	: :
: :	/LAV-	25 (U	SA)	/	:	:	:	:	:	•	: ;	: :	:	1	;	:	: :
: :	:	:	:	:	:	:	•	:	:	:	: :	:	:			:	: :
: :	. 1	: : : :			.1.4.2. C	: '	.1 6.	: 	:	:	00)	:			:	:	:
Techn	ology B		Horts	on M	uiti-5	pectr	at 2c	reen1	ng (p	age 1	00)		:		:	:	: :
:/	<u> 6.</u>	" -		/ :			•									:	
·Inter	rated C	vc C1	athing	Sugr	em (ne	• • 94	;	•	:	:	•		•	,	•	•	•
· · ·			.3b	/	6.4		7	:	:		•			, !	•	•	•
: :	:	 _	: :	<u></u>		:	:	:	:	:	:	:			:	:	: :
:KE Per	netratu	r Tec	haolok	v/Peo	eiraij	on Me	chaní	ca Mo	delin	g (pa	ge 94	:	•		:	:	1
:/	6.2	7:	:	:	:	:	:	:	:	2	:	:	:	:	:	•	:
: 76.	3a/ :	- :	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	: :
: :	-:	:	:	:	:	t	:	:	:	:	: :	: 1	:	1	:	:	:
: :	:	:	:	:	:	:	2	:	:	:	: :	: :	1	}	:	:	:
: :	:	:	:	:	:	:	•	:	:	:	: :	: :	:	:	:	:	:
: :	:	:	:	:	;	:	:	:	:	:	: :	: :	:	}	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
: :	:	:	:	:	:	:	:	:	:	:	: :	:	:		:	:	: :
: :	Ĭ.	:	:	:	•	•	:	: -	:	:			:		;	:	
: :	:	:	:	:		:		:	:	:				;	:	:	
	•	:	:	:	:	:	:	•	:	:	•	•		,	•	•	•
	•	•	:	•	•	:	•	:	•	•	:		;	•	•	:	•
: :	:	•	:	•	:	:	:	:	:	:	:	: :	-	•	- :	:	•
: :	<u> </u>	:	:		:	:	:	:	:	:	:	:	:		•	:	:
: :	:	:	:	:	:	:	:	:	:	:	: 1	: :	1	;	1	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	}	:	1	: :
: ;	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:
: :	:	2	:	:	:	:	:	:	:	:	: :	: :	:	:	1	:	: :
: 2	:	:	:	:	:	:	:	:	:	:	:	: *	;	}	:	:	: :
: :	:	:	:	:	:	•	:	:	:	:	:	: :	:	}	:	:	:
: :	:	:	:	:	:	:	1	:	:	:	:	: :	;	:	:	:	:

MOBILE PROTECTED GUN SYSTEM

The MPGS will be lighterweight and smaller size than the main battle tank and will be used with forward deployed forces and in operations from the lodgement area by contingency forces. A three-man crew will consist of a commander, a driver, and a gunner. The primary armament will be a 75MM antiarmor automatic cannon. The power train will provide approximately 20 HP per ton of vehicle weight. The fire control system will be stabilized in two axes and have a video screen display.

HIGH SURVIVABILITY TEST VEHICLE-LIGHTWEIGHT (HSTV-L)

A 21 ton test bed mounting a 75MH medium caliber anti-armor automatic cannon. The HSTV-L was developed to allow the Armor & Engineer Board to test a lightweight system (capable of being strategically or tactically transported in C141B or C130) which combines all the features necessary to make it an effective anti-armor assault or defensive system. Results of HSTV-L testing were combined with HIMAG tests and used in future lightweight system requirements such as the Mobile Protected Gun System Program.


HIGH MODILITY AGILITY (HIMAG) VEHICLE

A medium weight class variable parameter test bed mounting a 75MM medium caliber anti-armor automatic cannon. The HIMAG was developed to provide the Armor & Engineer Board with a system on which they could vary parameters in order to obtain optimum system performance. Component parameters that can be varied include; suspension spring rates, number of roadwheels, fire control performance levels, gun controls sight displays, etc. Data obtained from HIMAG testing is being used in developing future system requirements.

MOBILE PROTECTED GUN SYSTEM (MPGS)

The configuration and the performance capabilities for this vehicle are currently being defined.

FY83:	FY85	;	: :FY87:	:	FY89:	:	:FY91	:	FY93		:FY95	:	F¥97	:	:FY99	: : :	:FY01
:				:			:	:	: :		:	:	: :		:	:	:
:	: :	;	: :	:		•	: :	: :	: :	•	•	1	: :	:	:	: :	:
:	: :	;	: :	:	:	:	:	:	: :	:	:	•	: :	:	:	;	:
:	. :	:	: :	:	:	<u>:</u>	:	: !	: :	; !	:	: :	: :	:	:	: :	:
(COMPLE	TED IN	FY81	·)	:		•	:	:	:		:	:	;		:	:	:
:	: :	:	: :	:	: :	:	:	:	: :	:	:	:	: :	:	:	:	:
:	: :	:	: :		:		:	:	. :	;	:	: •	: :	;	: •	:	:
:	:	· :	: :	:		•	:	:	:	:	:	•	: :	,	- :	:	:
:	: :	ł	: :	: :	: :	:	:	:	: :	:	:	:	: :	:	:	:	:
	: :		1 :	:	. :		:	:	: :	;	:	;	: :		:	:	:
:	•	, 	: :	:		•	:	:	: :		:	:	: :	:	:	:	:
:	: :	:	: :	: :	:	:	:	:	: :	:	:	:	: :	:	:	:	:
:	: :	:	: :	:		:	:	:	: :	:	:	:	: :		:	:	:
;	:		: :	•			:	:	:	• !	- :	:	: :		• :	:	:
(COMPLE	ETED IN	FY81) :	: :	:	:	:	:	:	:	:	:	: :	:	:	;	:
:		:	: :	: :		:	:	:	: :	:	:	:	: :	:	:	:	:
:	1 1	: :	: :			: :	:	:	:	•	: :	:	: :	•	: :	: :	:
:	1	:	:	: :		•	:	:	:	:	:	:	:	:	:	:	:
:	: :	:	: :	:		:	:	:	: :	!	:	:	: :	.	:	:	:
:	:	: !	: :	: :	:	: :	:	: :	1 :	•	: :	: :	: :	•	: :	: :	:
:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	: :	:		:	:	:	:	:	:	:	: :		:	:	:
:	:	:	: :	: :		: :	:	: :	1 1	; !	:	: :	: :	.	; ;	; :	:
			<u>: </u>			:	:	:	:	:	:	;	:	:	:	:	:
: <u>/</u>	PROTOT		~~~		DUCT	ion 7	:	:	:	:	:	:	: :		:	:	:
:		: :	: :	: :		: :		:		:		:				:	:

ç3_I

Y83:	: :FY85:	: FY87:	: :FY89	: : : :	: FY91:	: :FY93	: : : :FY	:)5:	: :FY97	: :	: FY99:	: : F	FYO I
	_ 	بسند		نسن						<u> </u>	1	<u> </u>	
: ,	PROTOTYP		PRODUCTIO	i , :	:		: :	:	:	:	: :	:	
: 4	PROTOTIF		PRODUCTIO		:	•				:	: :	:	
:	• •	• •	:	: :	:	•		:	•	•		:	
w Coat	Land Navi	estion ((nege 10)		:	•	: :	:	•	•		:	
6.2	/ 6.3a	7:		: :	:		: :	:	2	•	: :	•	
			•	: :			: :	:		-	: :	:	
ndheld	Encryptio	π and Au	uthentica	tion D	evice	(page 8)		:	•	:	: :	:	
6.3		: :	:	: :	:	:	: :	:	•	- :	: :	:	
:	: :	: :	:	: :	:	:	: :	:	:	:	: :	:	
wer So	urces/Adva	nced Tac	ctical Po	wer So	urces	(page 12)) :	:	:	:	: :	:	
6.2	/ 6.3	b 7:	:	: :	:	:	: :	:	:	:	: :	:	
:	: :	: :	:	: :	:	:	: :	:	:	:	: :	:	
hicula	r Intercom	municat	ion Syste	ա (հան	e 16)	: :	: :	÷	: :	:	: :	:	
6.3b /	6.4	: :	:	: :	:	:	: :	:	:	:	: :	:	
:	: :	: :	:	: :	:	:	: :	:	: :	:	: :	:	
	er Wave (M	MW) Wir	eless Int	ercell	Comm	unication	System (wics)	(page	10)	: :	:	
6.2	7: :	: :	:	: :	2	:	: :	2	:	:	: :	:	
:	: :	: :	:	: :	:	:	: :	:	:	:	: :	:	
	hannel Gro	und and	Airborne	Radio	Subs	ystem (SII	NÇGARS) (page .	14) :	:	: :	:	
$\frac{3b}{}$: :	: :	:	: :	:	:	: :	:	: :	:	: :	:	
:	: :	: :	·	: :	:	:	: :	:	: :	:	: :	:	
	uency Synt	hesizer	(page 14	.) :	:	:	: :	2	:	:	: :	:	
$\frac{6.2}{}$	6.3a /	: :	:	: ;	:	:	: :	:	:	:	: :	:	
:	: :		:	: 2	:	:	: :	:	:	•	: :	:	
ISIC Ph	ase 2 Chip	Set (pa	age 16)	: ;	:	: :	: :	:	: :	•	: :	:	
: 4	6.3	: :		: :	:	:	:	:	1 :		: :	:	
	: :	14. (. : 	: :		. :	:	:	:	•	: :	:	
RCC1CA1	Power Sup	Piles (G, (pa	ge 14		<u> </u>		<u></u>	ببب	<u>i</u>	سنس	,
	6.2	-	/ 6.3a		-	6.3b			<u> </u>	6.4			<u>-</u> /
•	i i . vuo nade:	i i		I TWO CLAR			: :	:			: :	:	
		ADDILA	ues for a	エいししん に	5-V	rage of	: :	:	: :	:	: :	•	
laptive		7.			_			_					
daptive <u>/6.2</u>		7:	:	: :	:	:	: :	:	:	:	: :	:	

 $c^3 \mathbf{1}$

1

(]

: :FY83:	: FY8:	:	: :FY87	:	: :FY89		: :FY91	:	: :FY93		: :FY95		: :FY97	; ;	FY99	:	: :FYO
	• F10.	,;	1110/			•				:	* E I 7 J		*****		7177	:	1617
	<u>_</u>		<u> </u>	<u>. </u>	!	<u> </u>	: -		<u> </u>	<u>.</u>			-			:	<u></u>
	/ DB/	TOTY	,	7 1100	DUCTI	ON /	:	:	•	:	:	:		• •		•	•
	PR	110111	-	PRO	DOCIL	<u> </u>		•	:	:	:		•	• •	i		
	•	•			•	•		•	:	:	•		•				
; • C 0 1 1	Unit Ra	16a (-	1			•	:		•	:	:	•	•	• •			
		7: 0			•	:	:			:	:	•	•	• •	i 1	•	•
	0,34	' : <i></i>	6.30			:			:	:	:			• •		•	•
· ·Uinh '	Power VH	E Vahi	i Coulon		: 	5000	٤١	•		:	:		•	• •			•
	.3b/:	· veii	rcurar	Ante	una (hage	•		•				•			•	
	<u>. 30</u> / •	:	:					•		:	•	•	•		•		
	ary Comp		? a— (1	. (. 10)					•		•		• •			
MILLIL	ary comp	icer r	amily	(pag	e 10/	<u> </u>		-	2, 6.	<u>:</u>	<u> </u>	<u> </u>		<u> </u>		<u></u>	<u></u>
' -					~~~~				6.4	30							
• 4					-				0.4								
i i				•			. (2 AT	; ; ;	•	10)		•	•	•	;	: -	:
	Armored	rrect	ronic	Syst	enn Ca	rrier	LAE	SC) (page	10)	:	•	:			:	;
- 70	<u>.3b</u> /:	•		:	•	-	:	•				•	:	: :		:	:
	Signal 1		T	:		; - n 111			7			: 	; - 4 D	; :		: (
	51gna1 6.3a	rroce:	BROL I	nsert	1011	n PJH	/ Adva	ncea	Commu	UICHL	Tous	conce	pt De	veroba	ent	page	10)
·	0.34			•			•	:			•						
. 500 ti		, 10		: ::	: (٤,						•		I. I		•	:
6.37	att VHF	LOWET	umbir	ilei	(bage	."		•	•						i I	•	
10.31		i .		•		:			•				•		i	•	
. Wlas	Panel El	i natral			(E1)	ā Drine	1 /		٥١								
· Lau	Paster El	ECT (O)	1 CHILITE	BLEIL	. (6,1,7	Preh	ray (page	٥)		•					•	•
<u> </u>			- <u>-</u>	:		•	•	:	•	•	•	•			•	•	
	Phase 1	er i	: Co+ /		141			•		•			•				•
Augic	6.30	7.	set (hage	10)		•				•		•			•	
•	0,38		•	:	•	•	:	•		:	:	•			•		
		•		•	•	•		•			2	•	· ;				
• •	:	i	ă		•			•						• •			:
	:	÷	•	•	•			•	•		-		•				
• •	:	•	•			•	•	:			•		•	•		:	:
	:	•			:									: :		:	
: :	:	;		•		:	:		•		:	:	-	: :		:	:
: :	:	:	:	:	:	:	:	:	:	:	:	2	:	: :		:	:

FIREPOWER :FY89: :FY83: :FY85: :FY87: :FY91: :FY93: :FY95: :FY97: :FY99: :FY01: PROTOTYPE / PRODUCTION / : :Precision Aim Technique (page 41c): :LP Technology (page 40): :Light Armored Vehicle Evaluator (page 40) : : :CO2 Laser Rangefinder (page 24) :Improved 105mm APFSDS-T (page 36) : :Inertial Component Development (ATAADS) (page 36): : •

FIREPOWER

: :		:	:	:	:	:	:	:	1	:	:	:	:	:		:	:
:FY83:	:FY8): :	:FY87	:	:FY89	: •	:FY91	; <u>:</u>	:FY93	: :	:FY95	: :	:FY97		:FY99 :	: :	:FY01
			<u>: </u>		:	<u>:</u>	:		:	:	:	:		:	:	<u></u>	:
: :	/ PR	OTOTY	E	/ PRO	DUCTI	ON /	:	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
i . • Advana	ed Comm	i nndau'	i o Voh	icla	Ciant	: (ACV	: -T) (:		20)		•		•		: •	•	•
: Auvanc	.ea comm	anner		a, 6.		7	· · / (page :	:	:	:	:	1	:	•	:	:
	:	:	7-	1	:	į	:	:	:	:	:	:	:	:	:	:	:
:Dyn <i>a</i> mi	c Muzzl	e Sena	sing (page	30)	:	:	:	:	:	:	•	:	:	:	:	:
6.2	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	red Non-	Standa	ard Ço	nditi	.cn Sei	nsor	(page	36)	:	:	:	:	:	:	:	:	:
4 6.2	/:	:	•		•		ē.	<u>.</u>		• •	2	•	•	; ,	:	•	
· :RAM Ha	rdening	of Re	- angine	Elec	troni	св (р	ege 4	le)	:	:	:	:	:	:	• •	:	:
(6.3b)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:
: ASLAV	(page 2	<u>4)</u>	<u>. </u>	:	ė,	:	:	:	:	:	:	:	:	:	:	:	:
<u> </u>	6.2				4	:	:	:	:	:	:	:	:	:	:	:	:
; •Vahiol	: Le Dyn <i>a</i> m	i ic Cor		: (naca	. (116)	:	:	:	:		:	:			:	•	
16.27	ie Dynami	ire sei	TROLE	, hake	•	•	•	• •	•	• •	•	•	•	•	•	•	•
بعنعة	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:
: :	:	:	:	:	:	:	:	:	:	•	2	:	: :	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	•	•	•			•	•		:	•	•			.	:	
	•	•	•	:	:	•	:	<u>.</u>	•	:	:	:		:	•	:	:
: :	:	:	:	:	:	- 1	:	:	:	:	:	:	:	:	;	:	•
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	•	•	2	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	=	:	:	:	:
: :	:	:	1	:	:	:	:	:	:	:	:	:	•	:	:	:	:
: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
: :	:	:	:	:	:	:	ī	:	:	:	;	:	:		:	:	;

MOBILITY

	: : :FY85:	: : :FY87:	: :FY89	: :	: Y91:	: :FY93	: :	FY95:		: :FY97:	:	: FY99:	: :FY01
FY83:	: 6787:	:: 1878/:	: 1189	: :r	Y91:	: 4493				: 1797		. 1991	: FYU1
 -	-::-		; -	:	 -					<u> </u>		- -	~
•	/ PROTOT	YPE /	PRODUCTION	ON 7	:	:	: :	:		:		:	:
:	•	: :	:		:	:	: :	: :		:	: :	:	:
:	: :	: :	:	: :	:	:	: :	: :		: :	: :	:	:
Combat	Mobility F	uels (pag	e 46)	: :	:	:	: :	:		: :	: :	:	:
6.	1, 6.2, 6.3	7:	:	: :	:	:	: :	: :		: :	: :	:	:
:	: :	:	:	: :	:	:	: :	:		: :	:	:	:
Cank-Au	tomotive T	ech/Engin	e Concep	ts for	Alterr	nate Fue	ls (pa	ige 56)	: :	: :	:	:
		6.2			:	:	:	:		:		:	:
	: :	: :	1	: :	: :	:						:	:
ranami	ssion Comp	onent bev	eropment	(page			<u> </u>				· ·	<u></u> -	
					6.3	•				•			
i Lubrica	ints for Co	nventinna	1/Non-Co	Oventio	nal Er	vines (ngga 5			•	•	2	•
		Z	1	: :	:	1	: :	:		:		:	:
	1, 6.2, 6.3		•	: :	:	:	: :	:		: :	: :	:	:
/ehicle	Engine De	velopment	Engine	Concept	s for	Alterna	te Fue	io (p	age	58)	: :	:	:
1			6.3					7		: :	: :	:	:
•		-::	<u>;</u>	: :	1	:	7	: .		: :	: :	:	:
Corrusi	on Prevent	atives (p	age 48)	: :	:	:	: :	:		:	: :	:	:
6.	1, 6.2, \$6.3		:	: :	:	:	: :	:		:	: :	:	:
:	: :	 :	:	: :	:	:	: :	: :	:	:	: :	:	:
Advance	d Air Filt	ration (p	age 42)	<u>: :</u>	<u>:</u>	<u> </u>	<u>::</u>	<u>:</u>		:	<u> </u>		
·					6.2	2	 ,						
		: :	., .,	: ::	•	:	: :						:
	ic and Alt		iera (bag	e 50):	:	:	: :		:				:
6.	<u>1, 6.2, (6.3</u>				•	•					. :	:	
ct 6 _€1	eaning Air	Filtor (ecar) (n	54)		•					• •	:	:
Ser. 1-01			JUNE / YP	age 34)	•	•				•		:	:
•	6.3	·		<u>, </u>	:	:	:		:	2	· ·	:	:
•	: :	: :	•		:	:	: :	: :	· }	:	: :	:	:
•													
:	: :	: :	:	: :	:	:	:		;	:	: :	:	:

:		: :		:		:	:	:	‡ - 704/	:		;	:	:	:	~ .
FY83:	:FY85:	:FY87:	FY8		:FY91	:	:FY9	J:	:FY	45 :	· FY	9/:	:FY	<i>)</i> 9:	:FY(JΙ
 -				 -	 -	: -	<u> </u>	 -		- ;	~ - ;	- -	 -	~÷	~ -	~
•	PROTOTY	PE / P	RODUCT	ION /	:	:	:	:	•	:	•	:	•	•	•	
:		: :	:	:	:	:	:	:	•	:	:	:	:	÷	:	
:	: :	: :	:	:	:	:	•	:	:	:	:	:	:		2	
NBC Re	sistant Trac	k & Suspe	nsion	(page	54)	:	:	:	:	:	:	:	:	:	:	
6.27	6.30			ブ: -	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	•	:	:	:	•	:	:	:	:	:	:	:	
Fluidí	c Damper (pa	ige 48)	:	:	:	:	:	:	:	:	:	:	:	:	:	
6.	3a /:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	2	:	:	:	:	:	:	:	•	:	:	:	:	
JOW CO	st Land Navi	gati on (p	age 52	!)	:	:	:	:	:	:	:	:	:	:	:	
6.2/	6.3a	<i>]</i> : :	:	:	:	:	:	:	:	:	:	:	:	:	:	
:		` :	:		:	:	:	:	:	:	:	:	:	:	:	
Track	Rubber Devel		age 50	<u>)</u>	:	:	:	:	:	:	:	â	1	:	:	
	6.3			_ . ^:	:	:	:	:	:	:	:	:	1	:	:	
		1 1	•	.:	• /	:	:	:	:	:	:	•	*	=	:	
	ntal Positio	n and Acc	ituae	Subsy	scem (page	50)	:		:	:	:	:	:	:	
	<u>2</u> /		•			:	•	:	:	:	:		:	:		
i Huidi	c Heading Re	forence (naga /	.83	•		•	•	•	:	:	•	:		•	
Lulul	6.2	7 ·	Page 4	•	:		:	:	:	:	:	:	:	:	:	
	-6.2	<i>-</i> ∤. :	•	:	;	:	:	•	:	•	:	:	:	:	:	
Hich M	obility Ener	gy Effici	ent Sy	rst.em	(page	50)	-	•	•	•	-	•	:	:	•	
:		6.3a		7		:	:	:		:	:	:	:	:	:	
:		0.3a.	 -	<i>-</i> 7:	:	:	:	:		:		:	:	:	ï	
Advanc	ed Composite	Material	s (pag	e 42)	:	:	:	:	:	:	:	:	:	:	:	
	6.2		7	:	:	:	:	:	:	:	:	:	:		:	
:	: :	-::	- ;	:	:	:	:	;	:	:	:	:	;	:	:	
Driver	s Thermal Vi	ewer (pag	e 48)	:	:	:	:	:	:	:	:	:	:	:	:	
6.4	:	: :	:	¥	:	:	:	:	:	:	:	:	:	:	:	
	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
;	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
•	: :	: :	:	:	:	:	:	•	•	•	:	•	:	•	•	

ILITY	· 					91:	: :FY93:		:FY95		: :FY97	:	: :FY99	:	:FYOL
83:	:FY85:	; FY	187:	:FY89:		1914	: 1				<u>:</u>	<u>. </u>	<u>.:</u>	<u></u>	<u> </u>
:	<u>:</u>			بنسب					:	:	:	:	:	:	•
:		سنب		ODVICTIO	v 7 ;	•	: 1		:	:	į	:	:	:	:
:	PROTO	TYPE	/_PE	ODUCTIO		:	: :		:	:	:	:	:	•	
:	: :	:	:	;	:	:	: :		:	:	:	:	:	:	•
:	: :	:	:	• , •		:		:	:	:	:	:	:	:	:
vance	ed Tactica	1 Pow	er Sou	rces (pa	ige 447	:		2	:	:	:	:	:	:	•
6.2	6	.3Ь		: :	•	•			•	:	:	:	:	:	:
	-/	:		:		•			•	:	:	:	:	:	:
ack	Retention	& Con	trol (page 56%	:	:	•		:	•	:	:	:	:	:
~~~~~	( 3 - 6	:	:	1	: :	:	1		:	•	:	:	:	:	:
2/_	6.3a		:	:	: :	:			:	:	•	:	;	:	:
	ed Track	Snar	ension	Materi	als/Str	ucture	as (page	44.7	•	:		•	:	:	:
vanc	eu liack		34		· :	:	:	:	•	:	:	•	:	:	:
:	<u> </u>				: :	:	:	:	•	•	:	:	•	:	
:	oreign Tr		. a1 vo i s	(page	52) :	:	:	<u>:</u>		<u> </u>	ـــنـــ				
ATO/ I	oreign ir	ECK A	iniyaxo	( )		6.	2							<del></del>	<u> </u>
				<del></del>	: :		:	:	:	:	-		:	:	•
,				(44)		:	:	:	:	:	:	•	•	:	•
dvane	ced Diesel	-1000	HP (P	age 44)		1	t	:	•	:	:	:	•	•	:
	6.34			•	: :	•	:	:	:	:	:	:	Ŧ	•	:
			. :		· . (ne	ma 48)		:	;	:	:	:	:	•	:
7X-6	50 Hydrome	chaní	cal Tr	anemles	.on pa	.g 407	•	:	:	:	:	:	:	:	•
.3a/	:	: :	:	:	•	:		•	:	:	:	:	:	:	-
	:	: :	• •	:		•		•	:	:	:	:	:	:	:
diab	atic Engir	ie Pro	gram (	page 42.	);		:	;	:	:	:	:	:	:	:
		3a			:		:	:	•	:	:	:	:	:	:
			-	:		•	:	:	•	:	:	:	:	:	:
	ced Adiab	atic T	[echnol	.ogy (pa	ge 42):	: :	•	:	•		:	:	:	:	:
				3a	7	: :	•	•	:	•	:	1	:	:	:
	6.2	<i>-</i> -			<b>-</b> :	: :	7	•	:			:	:	:	1
				:	:	: :	:	•	i	;	-	•	:	:	:
	•	:		:	:	: :	:	:	•		:	•	•	:	:
	:	:	: :	:	:	2 :	:	:	ŧ	•	:	:	•	:	:
	: :	•	: :		•	: :	:	:	:	:	•	•	:	-	:
	: :	:		•	•	: :	:	:	:	:	:	:		:	2
	: ;	:		:	:		:	:	:	:	:	:	:	:	
	: :	:	: :	•	•			•	:	;	:	:	:	•	•
,															

SENSING :FY87: :FY99: :FY83: :FY85: :FY89: :FY93: :FY95: :FY9/: :FY01: PROTOTYPE / PRODUCTION , :Acoustic Sensors (page 60) :Target Background Signature and Environments (page 78): :Chemical Alarm Tech (page 66): :ADDEV of Automatic Liquid Agent Detector, XM85, XM86 (page 60) :Flat Panel EL Displays (page 70) :Multi-Sensor Air Defense Acquisition (page 74) :Improved Non-Standard Condition Sensors (page 70): :Vehicle Dynamics Sensor (page 79a):

SENSING

FY83:	FY85:	:FY87:	: :FY89	: :	: :FY91	:	: :FY93	:	: :FY95	:	:FY9	7:	: :FY99	:	:FY01
<del></del>	<del></del>	<del>~</del>	<del>~</del>	<del></del>	<del></del>	<del></del> -	<del></del>	<u>.</u>	<del></del> -	<del>-</del>	÷	<del></del>	<del></del> -	<u></u>	<del></del> -
	/ PROTOT	YPE /	PRODUCTI	ON /	:	:	:	•	:	•	:	•	:	•	•
:			:	:	:	:	:	:	:	:	:	i	:	:	•
:	: :	: :	:	:	:	:	:	:	:	:	:	:		:	•
Multi-H	Environment	Active R	F Seeker	Test	Bed (	(page	74)	:	:	:	:	:	:	:	:
6.2 /	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
cquis:	ition Subsy	stem (pag	e 60)	:	:	<u>.                                    </u>	<u>:</u>	<u>.                                    </u>	<u>.                                    </u>	<u>.                                    </u>	:	<u></u>		<u>.                                    </u>	<u>.                                    </u>
			6.2	<u> </u>											
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
	Radar for A	ir Defens	e (page i	76)	:	:	2	:	:	:	:	•	:	:	:
6.21	6.3a	<i>!</i> :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
	Assesment	: Concepts	(page 6	6)	:	•	:	:	:	:	:	:	:	:	:
6.2	<i>_</i> _ :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	7	:	:	:
yn am 1	Muzzle Se	nsing (pa	ge 68)	:	:	:	:	:	:	:	:	:	:	2	:
6.2	:	: :	:	•	:	:	:	:	:	:	:	:	:	:	:
:	: :		:	1	:	:	•	:	:	:	:	:	:	:	:
	cron IRDA	(page 60)	:	:	:	:	:	:	:	:	:	:	:	:	:
<b>½</b> .	6.2	: :	:	:	:	:	:	:	:	:	:	:	:	:	2
	: :		•	:	:	:	:	:	:	:	•	:	:	:	:
	s Thermal	Viewer (p	age 68)	:	:	:	:	:	:	:	:	:	:	:	:
6.4		: :	•	<b>:</b>	:	:	:	2	:	:	1	:	:	:	:
Th :: '	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		70.\	<b>:</b>	τ .	<b>:</b>		:	:	<b>:</b>	:	:	:	:	:
	Weapon Si	gnt (page	/9a)	:		:	:	:	•	:		:	:	:	:
6.36	6.4	f: :	:	:		:	:	:	:	:	:	:	:	ŧ	:
:	•		•			<b>.</b>					:		:		:
			:			•	<u>.</u>	:		•	•	ĭ	=	:	
•	•				•	•		•		•			:		:
•	• •			•	•		•	•		•		ž.			:
•	: :			•		•					:	•		:	
:	•		:	•	:	•	•	•	•		•		•		
-			•	•		•	•	•	•			-		:	
•		: :		•	•	ě	•	•	:	:	•	•	:	:	Ä

	. Tru 0 E :		:	. metr	:		:	: :	: :	: :	: :	; ;	:
Y83:	:FY85:	:FY87:	;	FY89	:	:FY91	:	:FY93		:FY95:	:FY97:	:FY99:	:FYO
	<del>~</del>	~		<del></del>	<del></del>	<u> </u>	<del></del>	<u> </u>		<u> </u>	- <del></del>		
:	PROTOT	YPE /	PROI	MCTI	ON /	:						: :	:
:	/ INDIOI	1111	FROI	J. C. L. L.	UII /	•	•	•			• •	: :	:
•	• •			•	•		•	•	•	· ·		: :	
ulnli	Line UV-FI	r Tunahl	e 1.a.	erre	(naga	72)							•
6.2		I Londo	7		·	•	:	:	, ,				•
	<del></del>	<del></del>		•	•	:	•	•			• •		
rototy	yre Robotic	Sensor	Swate	-m (n.	ade 7	6)	•	•	, ,	:	•		•
		6.3a	9795	7.11		Ž'	•			: :			•
-:	: :	1 1			<i>-</i>	•	•	•				: :	•
rocess	sore for Co	mmon Mod	ule F	LIRS	(pap	a 76)	•	•			• •	: :	:
	7.	: :		:	`r-0	•	•					: :	:
-:		: :			:	:	•	:				: :	;
ılti-F	function La	ser Modu	le Ta	arget	Acqu	isiti	on an	d Enga	zemer	nt (page	74)		•
	6.2	<del></del>	7:	:	: 1	:	:	: ;		:	: :		·
-:	: :			:	:	:	:	:	:				•
ight V	<b>Jision Auto</b>	Sensor	Devel	Lopmen	nt (p	age 74	<b>(</b> )	:		:		: :	•
	, 6.3a /												
•	<del></del>					;	:	: :		:		: :	:
utomat	ic Target	Acquiait	ion (	page	64)	:	<u> </u>	: :		: :	: :	: :	:
6.30	;	: :	:	: ;	:	:	:	: :	:	:	: :	: :	:
<u> </u>	: :	: :	:	:	:	:	:	: :	: :	: :	: :	: :	:
dvance	ed Ground t	o Ground	Targ	get A	eiups	ition	Rada	r ′¦ag	e 62)	:	: :	: :	:
			7		:	:	:	: :	:	: :	: :	: :	:
6.3	sa J	; ;	:	: ;	:	: :	:	: :	:	:	: :	: :	:
ight A	Armored Veh	icle Eva	luato	or (pa	age 7	0) :	:	: :	: :	: :	: :	: :	:
	_} :	: :	=	: :	:	:	:	: :	:	: :	: :	: :	:
:	: : :	: :	:	:	:	:	;	: :	:	: :	: :	: :	:
	Module Mul	tifuncti	on La	иет (	page	66)	:	: :	:	:	: :	: :	:
6.3a	<i>:</i>	: :	:	;	:	:	:	: :	:	: :	: :	: :	:
	<del>-</del> : :	: :	:	: :	:	: :	:	: :	:	: :	: :	: :	:
:	: :	: :	:	:	:	:	:	: :	:	: :	: :	: :	;
:	: :	: :	:	: :	;	: :	;	: :	:	:	: :	: :	:
•													
:	: :	: :	:	:	:	:	!	: :	:	: 1	:	: :	:

(]

(,)

SENSING

:FY97: :FY99: :FYO1: :FY85: :FY91: :FY93: :FY95: :FY83: :FY87: :FY89: PRODUCTION PROTOTYPE :RAM Hardened CO2 Laser Rangefinder Common Modules (page 76): : :3rd Lager Rader Technology Demonstrator (page 60): :Stabilization Techniques (page 78): :RAM Hardening of Ranging Electronics (page 76) 6.2, 6.3b : : : : Tunable Filters, Optical Switches (page 79a): :Second Generation Focal Plane - Advanced FLIR Technology : : :XM22 Automatic Chemical Agent Alarm (ACADA) (page 79a):

SUPPORT :FY83: :FY85: :FY87: :FY89: :FY91: :FY93: :FY95: :FY97: :FY99: : FY01: PROTOTYPE / PRODUCTION / :Advanced Main-Tank Integration Studies (page 80) :NBC Decontamination (page 82): :Advanced Prognostics (page 80) :Combat Refueling (page 80) :NBC Recon System (page 82) :Material Handling Equipment & Supply Distribution (page 82): :Microclimate Conditioning System (page 82)

			<del></del>					<del></del>					سسسب
: FY83:	:FY85:	: : : :FY87	። ነ: :ም	: Y89:	: :FY91	: ; : : : : : : : : : : : : : : : : : :	: 193:	: :FY95	<u>.</u>	: :FY97	: :FY	; 99:	: : :FY01:
: :	1		: :	•	:	: :	:	:	•	:	: :	:	: :
			<del></del>	:	:	:		•	1	:		~ <del></del> -	
: :	PRO1	OTYPE	PRODU	CTION /	7:	: :	:	:	:	:	:	:	: :
: :		:	: :		:	:	:	:	:	:	:	:	: :
: :	: :	:	: :		:	: :	:	:	:	: :	: :	:	:
:Combat	Vehicle	Environme	ntal Su	pport S	Systems	(page	88):	:	2	: :	: :	:	: :
1 6.	3a	⁻ 7 :	: :	:	:	: :	:	:	:	: :	: :	:	: :
	: :	:	: :	:	:	: :	:	:	:	: :	: :	:	: :
:Collec	ctive Prot	ection Me	terial	(page 8	38)	: :	:	:	:	: :	: :	:	: :
:/ 6	.36 /:	: :	: :	:	:	: :	:	:	:	: :	:	:	: :
: :	<del></del> :	:	: :	:	:	: :	:	:	:	: :	:	:	: :
:NBC Te	chnology	(page 96)	); ;	:	:	: :	:	:	•	: :	:	:	; :
·	6.2			:	1	: :	•	:	<b>£</b>	ž :	: :	:	: :
: :	: :	:	;	:	:	: :	:	:	:	: :	: :	:	: :
:Vehicl	le Hardeni	ing (Track	c and Su	spensio	on) (pag	ge 100)	:	:	:	: :	: :	:	: :
/ 6	3a 7:	: :	: :	:	:	: :	:	:	:	: :	:	2	: :
: :	: :	: :	: :	:	:	: :	:	:	:	: :	: :	:	: :
:Stande	irdized Pi	re Suppre	ession C	omponer	itry (p	age 98)	:	:	:	. :	:	:	: :
<u> </u>	6.3a			:	:	: :	:	:	:	:	: :	:	: :
: :	: :	: :	:	:	:	: :	:	•	:	: :	:	:	: :
Advanc	ed Counte	ermeasure	/Yehicl	e Integ	grated	Defense	System	(page	86)	:	: :	:	: :
<u> </u>	6.36		/:	:	:	: :	:	:	:	:	:	:	: :
: :	: :	:	: :	, <b>:</b>	:	: :	:	:	:	:	:	1	: :
	climate Co	onditionir	ıg Synte	m (page	e 96)	: :	:	:	:	:	:	:	: :
:/6.36/	6.4	:	: :		:	: :	:		:	:	:	2	: :
<b>!</b> _ <b>!</b>	: ;	:	; ;	. ·	:	: :	:	:	:	:	:	:	: :
P84811	e Counter	measures	(page y	6):	:	: :	:	:	•	:		-	: :
<b>Z</b>	6.2	/:	: :	1	•	: :	:	:	:	:	:	:	: :
: :		: , :	: :	:	:	: :	:	:	:	:	: :	:	1 1
	Lighting	g (page 98	5) :	:	•	: :	:	•	:	:	: :	:	: :
<del>'</del>	6.2	: :	: :	:	:	: :	:	:	:	:	; ;	:	
: :		:		:			:	ī.	:	2 .	:	:	: :
: :	:	: :	: :	:	:	: :	ŧ	:	:	:	: :	:	: :
: 1	:	: :	ă :	:		: :		:	:		: :		: :
: :	:			:	:	: :		•	:		: :	:	
: :	;	: :	:	:	:	: :	:	:	2	:	: :	:	: :

 $\mathbf{C}$ 

(<u>;</u> .

: FY83:	: :: :FY85:	: :FY87:	: :FY89	:	FY91	: :	: FY93:		: :۴Y95:	: :FY9	7:	: :FY	: 99:	: :FY01
				<del></del>		<b>بـــ</b> ـــــــــــــــــــــــــــــــــ		~~~	<del>!</del>	سبند	سنِــ	<u></u>	<u> </u>	<u> </u>
:	1 1	<del></del>	RODUCTIO	7		: : : :	:			:	:			:
:	PROTOTY	PE / F	KODUCTIC	<del>'''</del> / :			:		: :	•	:	•	•	
•						• •	:			:	•	•	•	•
Fact	Energy Beam	n Roductia	n (nace	92) :		: :			: :	:	:	:	•	:
LIGUE	6.3a	7:	" 'Pugu				:			:	:	:	•	-
	- 1.5 k	<u> </u>		•		: :			: :	:	:	:	•	:
rm., r	Development_	and Demo	Program	(page	86)	: :	:		: :	:	:	:	:	:
11102	6.3a	7:				: :	:		: :	:	:	:	•	:
<del></del> :			:	:	:	: :	:		: :	:	:	:	:	:
M22 A	utomatic Che	emical Ala	rm Agent	(pag	e 10	2) :	:		: :	:	:	:	:	:
	6.3b	7 64	7:	:		: :	:		: :	:	:	:	:	:
:	: :	7 1 1	~ : :	:		: :	:		: :	:	:	:	:	:
I'I NGR	AY, Combat 1	Vehicle Se	lf Prote	ction	(CV	SP) (p	age 9	8)	: :	:	1	:	:	:
6,3		: :	:	:		: :	:		: :	:	:	=	:	:
	6.4	7: :	: :	:	:	: :	:		: :	:	:	:	:	:
	<del></del>		: :	:	:	: :	:		: :	:	:	1	:	:
ice M	ask, Combat	Vehicle C	rewman's	(pag	e 92	) :	:		: :	:	:	:	:	:
4 /:	: :	: :	: :	:		: :	:		: :	:	:	:	:	:
∸,	: :	: :	: :	: :	}	: :			: :	:	:	:	:	:
echno	logy Base E	fforts in	Infrared	Scre	enin	g (pag	e 100	)	: :	:	:	:	:	:
	6.2		: :	: :	:	: :	:		: :	:	:	:	:	:
:	: :	: :	: :	:		: :	:		: :	:	:	:	:	:
echno	logy Base E	fforts on	Multi-Sp	ectra	1 Sc	reenin	ig (pa	ge l	00) :	:	:	:	:	:
	6.2	7.	:	: :		: :	:		: :	:	:	:	:	:
=	: :	<del>-:</del> :	:	: :	:	: :	:		: :	:	:	:	:	:
ntegr	ated CVC Cl	othing Sys	tem (pag	ze 94)	ì	: :	:		: :	:	2	:	:	:
:		.3b /	6.4			: :	. :		: :	:	•	:	:	:
:	: 4:		:	:	:	: :	:		: :	:	:	:	:	:
E Pen	etrator Tecl	hnology/Pe	netratio	n Med	hani	ca Mod	leling	(pa	ge 94)	:	:	:	:	:
	7.2	: :	: :	: :	;	: :	:		: :	:	:	:	:	:
6.30	***************************************	: :	: :	: :	:	: :	: :		: :	:	:	:	:	:
4.30	<del>-</del> /; :	: :	: :	: :	;	: :	:		: :	:	:	:	:	:
:	: :	: :	: :	: :	}	: :	: :		: :	:	• 🛓	:	:	:
										_	_			

MPGS PROGRAM

VETRONICS

	<del></del>					•	•	•	<del></del>		<del></del>			, , ,	<del>,                                    </del>		<del></del>
FY83:	:FY85	•	: FY87:		FY89	•	:FY91	• •	:FY93	•	:FY95	•	:FY97	,	FY99	•	.FY01
:	:	:	: :			1			:	:	:		:			:	:
:		:				:	:	:	:	:	•	:	:		:	:	*
:	PRO	TOTYPI	E /	PROD	UCTI	ON /	:	:	:	:	:	1	: :	:	:	:	:
. :	:	:				:-	:	:	:	:	:	:	: :	;	:	:	•
:	:	: :	: :	: :		:	:	:	1	:	:	:	: :	:	:	:	:
ATEPS '	Technolo	gy (p	age 10	)4) :		:	:	:	:	:	:	:	: :	: :	:	:	:
$\sqrt{6.2}$ :	:	:	: :	: :		:	:	:	:	:	:	:	: :	: ;	:	:	:
:	:	: :	: :	: :		:	:	:	*	:	:	1	• •	;	:	1	:
Advanc	ed Progn			<u>se 104</u>	<u>.                                    </u>	<u>:</u>	: <u>-</u> - :	<u></u>	<b>:</b>	<u>:                                    </u>	:	•	: :	: ;	:	:	:
<u>/</u>		6.2,	6,3		<u> </u>	~ ~ ~					/	:	:	:	:	*	:
:	_ :	: :	: :	: , <b>:</b>		:	:	•	:	:	:	:	:	: :	:	2	:
ATEPS	Prototyp	e Deve	erobwe	ent (p	age	104)	:	:	:	:	:	:	: :	:	\$	1	1
6.34	:	:	: :			:	:	:	:	:	*	:	: :	:	t	•	1
	•	: :	: , :	101		:	:	<b>:</b> -	:	:	:	:	: :		<u>.</u>	•	:
Advanc	ed Diegn	OSTIC	· ( Dat	e 104	<del>'</del>		<u> </u>	·	<u> i</u>	: ·	i,	<del>.</del>	: ;			<u>.</u>	I
L		6.2,					<del></del>				<del>-</del> '	:			:	:	:
; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ics (pag	- 106°	: :			•					•	•					
Vecron	ics (pag	6.2,	<del>/</del> 3 -			·	<u>-</u>	<b>:</b> .	<u></u>		÷,	•		,	•		
<del></del>		0.2,									<b>-</b> ′	•	•		•	:	:
:	•	•	•			:	:	•	:	•	:	•	:			•	:
C.wnhat	Crew Di	enlev	(nece	104)	,	•	:	•	:	•	:	<u>.</u>	:			•	:
	<u> </u>	- Pres	· Pub	2 20-7		•	•	:	:	:	•	:	:		•	:	:
٠		:				:	•	•	1	:	:	:	:			:	:
	•		:			1	1	:	:	:	:	:	:		:	:	:
:	:	:	: :	: :		:	:	:	:	:	:	:	:		•	:	1
:	:	:	: :	:	1	:	:	•	:	:	:	:	:	:	:	:	:
:	:	:	: :	: :		:	:	:	:	:	:	<b>:</b>	: :	: :	:	1	:
:	;	:	: :	: :	;	:	•	:	:	:	:	•	: :	:	:	:	:
:	:	:	: :	: :	;	:	:	:	:	:	:	2	: :	:	:	:	:
2	:	:	: :	: :	:	:	:	:	:	:	:	<b>:</b>	: :	:	:	:	:
:	:	1 .	: :	: :	:	:	:	:	:	:	:	:	: :	:	;	:	2
:	:	:	: :	: :	:	:	:	:	1	:	:	:	:	:	:	:	:
:	2	;	: 1	: :	;	:	:	:	:	:	:	:	: :	:	:	:	:
:	:	:	1 1	: :	1	:	:	:	:	:	:	:	:	:	:	:	:
_			•		,	•	•	•	•	•	•	•	<b>1</b> :		•	2	:

#### FUTURE CLOSE COMBAT VEHICLES

#### Future Close Combat Vehicle Study:

This program formulated vehicle concepts based on threat projections, projections of pacing technologies and operational concepts for the 1990-2000 year timeframe. The four prime contractors (FMC, PACCAR, TCM and GD-LSD) submitted their Final Technical Reports to the Army Review Board representatives in early 1982. These reports are currently being evaluated in a cooperative DARCOM/TRADOC effort.

A second phase to the FCCVS program is currently underway which extends the concept formulation into the post 2000 timeframe. The results of this effort will be presented in mid - 1982 and evaluated in the same manner as the preceeding reports.

A sampling of the vehicle concepts from the first phase includes:

- High Pressure Gun Tank (45 Ton) o FMC: Carrier, Hypervelocity Missile (25 Ton) Overwatch, MM Wave & IR Homing Missile (25 Ton) - Assault Weapon Vehicle (43 Ton) Heavy Force o PAGCAR: Infantry Fighting Vehicle (43 Ton) Assault Weapon Vehicle (20 Ton) Medium Force Infantry Fighting Vehicle (18 Ton) Calvary Fighting Vehicle (18 Ton) Anti-Armor Vehicle (20 Ton) Heavy Assault Gun (45 Ton) o Teledyne Continental Motors: Heavy Infantry Support Vehicle (40 Ton) o Armored Fersonnel Carrier (18 Ton) Light Assault Gun (19 Ton) Fire Support Vehicle (20 Ton) Cavalry Fighting Vehicle (20 Ton) ATGM Vehicle (19 Ton) O General Dynamics (Land Attack Vehicle (52 Ton) Systems Division): Assault Vehicle (54 Ton) Reconnaisance and Security Vehicle (16 Ton) Long Range Anti-Tank Vehicle (37 Ton) Electronic Attack Vehicle (37 Ton)

 $c_{3}$ I

FY83:	:FY85:	:FY87:	:FY89	: : : :1	FY91:	: FY93	: }:	: FY95:	: FY 9	: 17:	:FY	99:	: :FY01
:	: :	: :	:	: :	:	:	•	: :	:	:	:	:	:
	:	: :		: :	:	:	•	:	*	:	:	:	:
CON	CEPT PHASE	: :	:	: :	:	: :	:	<u>: :</u>	<b>:</b>	_:_	:	_ :_	:
COMP D	ev-exp prote	OTYPE /	,	VALIDA1	CION-F	SED-PLT		$\mathcal{I}$	F	OLLO	I-ON		
:	: :	: :	:	: :	:	:	:	: :	:	2	:	:	:
:	: :	• •	:	: :	:	:	:	: :	:	:	:	:	:
	t Land Navi	gation (	page 10)	: :	:	*	:	: :	:	:	:	:	:
6,2	/ 6.3a	/: :	:	: :	8	:	:	: :	:	:	:	:	:
;	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:
	l Encryption	n and Aut	thentica	tion De	evice	(page 8)	2	: :	:	:	:	:	:
6	.3b/:	: :	:	: :	:	:	:	: :	:	:	:	:	:
8	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:
over S	ources/Advar	aced Taci	tical Po	ver Sou	ırces	(page 12	2)	: :	:	:	:	:	:
6.2	/ 6.31	<u>-</u> /:	:	: :	:	:	:	: :	:	:	:	:	:
:	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:
	ar Intercom	nunicati	on System	n (pange	16)	:	2	: :	:	:	:	:	:
6.3b	6.4	: :	:	: :	4	:	:	: :	1	:	:	:	:
:	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:
	nit Radio (	page 14)	:	: :	:	:	:	: :	:	:	:	:	:
/ 6.	3a / : _	6.3b	<b>_/:</b>	: :	:	:	:	: :	:	:	:	2	:
:	: :	: ;	:	: :	:	:	•	: :	:	:	:	:	:
	ve HF Radio		<u>2) :</u> :	: :	:	;	:	: :	:	:	:	:	:
6.2	/: <u>/</u>	6.3h		: :	:	:	:	: :	:	:	:	:	:
1	: :	: :	:	: :	:	:	•	: :	:	:	:	:	:
fillime	ter Wave (M	W) Wire:	less Inte	ercell	Commu	nication	ι Syst	em (WIC	S) (pag	e 10)	) :	:	:
6.2	$f: \int 5$	36 7:	1	: :	:	:	:	: :	:	:	*	:	:
:	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:
ingle	Channel Gro	and and	Airborne	Radío	Subay	etem (SI	NCGA	RS) (pag	e 14)	:	:	ź	:
6.3b/	: :	: :	:	: :	:	:	<b>±</b>	:	:	:	:	:	:
:	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:
	quency Syntl	hesizer (	(page 14)	) :	:	:	•	: :	:	:	:	:	<b>:</b>
6.2	6.3a /	: :	:	: :	:	:	:	: :	:	:	:	:	:
:	: :	: :	:	: :	:	:	•	2	:	:	:	:	:
HSIC P	hase 2 Chip	Set (pag	ge 16)	: :	:	:	:	: :	:	:	:	4	:
: /	6.3a /	. :	:	: :	:	:	:	: :	:		:	:	:
								. :	•			-	

 $C^{3}I$ :FY83: :FY85: :FY87: :FY89: :FY91: :FY93: :FY95: :FY97: :FY99: :FY01: • / CONCEPT PHASE :/COMP DEV-EXP PROTOTYPE VALIDATION-FSED-PLT FOLLOW-ON :VHSIC Phase | Chip Set (page 16) 6.3a /: : Tactical Power Supplies (1.5 Kw TEG) 6.2 : Adaptive VHF Radio Appliques for SINCGARS-V (page 6):  $\int 6.2 / 6.3a$ : : : : : Armor/Air Covert Net (page 6)  $\sqrt{6.3a}$  : : : : * :Military Computer Family (page 10): 6.2, 6.3b :VHSIG Signal Processor Insertion in PJH/Advanced Communications Concept Development (page 16) : : : : : : 500 Watt VHF Power Amplifier (page 6): :/6.3/ : : : : : : Flat Panel Electroluminescent (EL) Display (page 8) :

ľ
į

FY83	3:	: :FY85	:	: : FY87	:	FY89		FY91	:	FY93:	: :	: • 795	: :FY	97:	: :FY99	: :	: :FY01;
	<u></u>	<del></del> .													<del></del>	<u>:</u>	
~~	CONCE	DM DU	: 4 C/C		•	•								•	:		
	IP DEV			TURE	<del>,</del>		ZATIO	ATION-	VCPR	DIT	<del></del>			FOLLO	J-ON	<u> </u>	<del> ,</del>
CUI	IF DEV	LAF	KUIU	ITE			MILL	ILLUN.	POLV	FLL	<del>/</del> :			FULLA	<u> </u>		
	:	:	•		•				•			:		:	•	•	
. 1	Iave a	· nd Ia	• ••• C	• ~~~ an	d end	Room:	cidur	(000	• • 61•	;	• •		•	•	:	•	
	IAVE A	6.2,	6 3.	Omn att	7	DE CHAI	LUCI	· hee.	•		• •			•	•	•	•
	<del></del>	****	•		· · · · · ·	•	•	•	•	•	• •		•	•	:	•	•
<u>.</u>	ic En	Arov i	Guide	d Wie	eilo :	(nage	้าลา	•	•	•				•	;	•	•
E (			6.3	. ALL	7	, hage		•	•	•	• •	•		•	:	•	•
	<del></del>	•			· ·	•			-	•	•	•	•	•	•	•	•
<b>C</b> 1	C Fir	e end	Fore	et Se	eker	(nage	Alk)		<u>.</u>					•	•	•	•
	Ž			7	•	. hate		•	- :					:	:	•	:
-	<del>'</del>	<del></del>	-	<del></del> '	•	•		•	- !	•		j		•	•	•	:
	e/Las	er lin	mide	A Wie	sile 1	Ezner:	iment	(nage	. 41c	,	•	-	•	•	•	•	•
		:	:	•	•	:	:		:	:		-		:	:	•	:
-	<u>-'</u>	•	•	•	- :	•			•			•	:	1	•	- 1	:
	Volum	e Hvo	ervel	ocit <b>y</b>	Miss	ile E	meri	ment (	DARE	40)	: :		:	:	:	•	:
í	.2	76.34	7 6.	3Ъ	7		. 4		70-	:	:	-	:	:	:	:	:
i		:	:	*	<u> </u>	2			±	: :	: :	:	:	:	:	:	: :
Ł	Proce	SSOT	(page	32)	:	:	:	:	:	: :	: :		:	:	:	:	: :
-	6.1	7	:	:	:	:	:	:	<u>.</u>	:	: :	•	:	:	:	<b>:</b>	: :
_	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	: :
be	er Opt	ics G	uided	Miss	ile (	POG-M	(pa	ge 30	)	: :	: :	5	:	2	:	:	: :
	6.3a		:	:	:	:	:	:	:	: :	: :		:	:	:	:	1 :
_	:	:	:	:	:	•	:	:	:	: :	: :	:	:	:	:	:	: :
	:	:	:	:	:	:	:	:	:	: :	: :		:	:	:	:	1 :
	:	:	:	:	1	:	:	:	:	: :	: :	:	· t	:	:	:	: :
	:	1	:	*	:	:	:	:	:	:	: :	:	:	:	:	:	: :
	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	<b>:</b>	: :
	:	:	:	:	:	:	:	:	:	:	: :	2	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	: :	: :	:	: :	:	:	:	: :
	•	:	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	1 :
	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	: :
	•	•	:	•	•	•	•	•	•	•	: :	: :	2 1	:	:	:	1 :

F	ŢK	E	PO	WE.	R
				11,50	

FY83:   FY85:   FY87:   FY89:   FY91:   FY93:   FY97:   FY99:   FY01:								بيحسرمين		-							
:// CONCEPT PHASE : : : : : : : : : : : : : : : : : : :	: :	: • EV85	:	: v87•	: • FY89	:	• FY 9 L		: : FY93		: • FY95		FV97	•	FVQQ		: • EVO1
:/COMP DEV-EXP PROTOTYPE / VALIDATION-FSED-PLT / FOLLOW-ON /:  :Armament Systems Close Combat-Heavy (page 22) :/6.2/ 6.3a /  :High Denaity Kinetic Energy Penetrator Materials (page 34) :/6.2/ 6.3a / :All Visibility Target Acquisition for Combat Vehicle (page 22) :/ 6.3a / :Precision Aim Technique (page 41c): :/ 6.2 / 6.3a / :Thermomechanical Treatment for Improved Performance of DU-3/4 Ti KE Penetrator Alloya (page 41k): :/6.2/ 6.3a / :Rocket Assist Kinetic Energy (page 41g): :/6.2/ 6.3b / 6.4 :M1 Mark III Night Sight (page 40):	: :	: :	* F !	107.	:	:	:	:	• • • • • •	•	• E 193	:		• •	. F 1 7 7 .	:	: •
:/COMP DEV-EXP PROTOTYPE / VALIDATION-FSED-PLT / FOLLOW-ON /:  :Armament Systems Close Combat-Heavy (page 22) :/6.2/ 6.3a /  :High Denaity Kinetic Energy Penetrator Materials (page 34) :/6.2/ 6.3a / :All Visibility Target Acquisition for Combat Vehicle (page 22) :/ 6.3a / :Precision Aim Technique (page 41c): :/ 6.2 / 6.3a / :Thermomechanical Treatment for Improved Performance of DU-3/4 Ti KE Penetrator Alloya (page 41k): :/6.2/ 6.3a / :Rocket Assist Kinetic Energy (page 41g): :/6.2/ 6.3b / 6.4 :M1 Mark III Night Sight (page 40):	:	: :	:	:	:	:	:	:	:	:	:		:	:	:	:	:
Armament Systems Close Combat-Heavy (page 22)    6.2				;		<u>:                                    </u>	:				;			<u> </u>	1	<u> </u>	:
High Denaity Kinetic Energy Penetrator Materials (page 34)    1/6.2	:/COMP I	DEV-EXP P	ROTOTY	PE /		VALID.	ATION-	FSED	PLT				FOI	LOW-	ON		/
High Denaity Kinetic Energy Penetrator Materials (page 34)    1/6.2	: :	: ;	:	:	:	:	:			:	•			<b>.</b>	•	:	:
High Denaity Kinetic Energy Penetrator Materials (page 34)    1/6.2	Armemer	i . nt Svetem	u Close	e Comba	t - He sv	v (na:	• ee 22	,	:	• •	•				•	• •	•
High Denaity Kinetic Energy Penetrator Materials (page 34):			7	:	:	; `r~	:	:	:		2	•	:		:	:	:
All Visibility Target Acquisition for Combat Vehicle (page 22)  To 6.3a  Precision Aim Technique (page 41c):  6.2 / 6.3a /  Thermomechanical Treatment for Improved Performance of DU-3/4 Ti KE Penetrator Alloys (page 41k):  Rocket Assist Kinetic Energy (page 41g):  Rocket Assist Kinetic Energy (page 41g):  Modern III Night Sight (page 40):	: :	: :	:	:	:	:	:	:	:	:	:	: :	:	:	1	:	:
All Visibility Target Acquisition for Combat Vehicle (page 22)			netic 1	Energy	Penetr	ator	Mater	ials	(page	34)	:	:	•	:	:	:	:
Precision Aim Technique (page 41c):    6.2	:/6.2/	6.3a /	:	:	:	:	:	:	:	<b>:</b> -	:	:	:	:	:	:	:
Precision Aim Technique (page 41c):    6.2	4 411 176	: :	Tarast	i Anguin	; itian	i for C	i ombat	Vahí	: :1a (:	i Dago	: ??}				•	:	:
Precision Aim Technique (page 41c):  5 6.2 / 6.3a /:  Thermomechanical Treatment for Improved Performance of DU-3/4 Ti KE Penetrator Alloya (page 41k):  1	: ALL VI			Acquia	7.	•	·	1	:	page .	2 2 3	:	•	:	:	:	•
:Thermomechanical Treatment for Improved Performance of DU-3/4 Ti KE Penetrator Alloys (page 41k: \( \frac{16.2}{6.3a} \) \\ \tag{2.5} \\ \tag{3.5}	· ·		:	:		:	:	;	:	:	:	:	•		:	:	:
:Thermomechanical Treatment for Improved Performance of DU-3/4 Ti KE Penetrator Alloys (page 41k: \( \frac{16.2}{6.3a} \) \\ \tag{2.5} \\ \tag{3.5}	:Precis	ion Aim 1	echniq	ue (pag	e 41c)	:	:	:	:	:	:	: :	:	:	:	:	:
:/6.2/ 6.3a / : : : : : : : : : : : : : : : : : :	;	6.2		6.3a	<b>7:</b>	:	:	:	:	:	:	:	:	:	٤ :	:	:
:/6.2/ 6.3a / : : : : : : : : : : : : : : : : : :	:_ :	: :	: :		: _	: .	•	:	:	* nu 1	<b>:</b> :	: :	:	:	: 1	. ,	:
: : : : : : : : : : : : : : : : : : :			l Trea	tment t	or Imp	roved	Pert	orman '	ce of		/4 T1	KE P	enetr	ator	Alloy	a (pa	ge 41
: \( \frac{1}{6.2} \) \( \frac{6.3b}{6.3b} \) \( \frac{6.4}{6.4} \) \( \frac{1}{6.2} \) \( \frac{1}{6.3b} \) \( \frac{6.4}{6.4} \) \( \frac{1}{6.2} \) \( \frac{1}{6.3b} \) \( \f	70.2/	0.3a /		•	•	•	<u>.</u>	• •	•	•	•	•	•	<u>.</u>	•	•	•
: \( \frac{1}{6.2} \) \( \frac{6.3b}{6.3b} \) \( \frac{6.4}{6.4} \) \( \frac{1}{6.2} \) \( \frac{1}{6.3b} \) \( \frac{6.4}{6.4} \) \( \frac{1}{6.2} \) \( \frac{1}{6.3b} \) \( \f	Rocket	Assist N	inetic	Energy	Dage	41g)	•	:	:	:	:			:	:	·	:
					7	:	:	:	:	:	:	:	:	:	:	:	:
	: :	: :	:	:	_:	:	:	:	:	:	: :	:	:	:	: :	:	:
				ht (pag	e 40)	:	:	:	:	:	:	:	•	:	:	:	:
	:/6.:	2 / 6	<u></u>	:	:	:	:	:	:	:	:			:	:	:	:
				:	•	•	•	•	•	•	•	•	•	•	•	•	•
	: :		:	:	:	;	:	:	:	;	:			:	:	;	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	: :	: :	:	:	:	:	:	:	:	:	:	: :	:	i	:	:	:
	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	•	:	:	:
	: :	: :	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:
	: :	: :	: :	:	:	:	:	:	:	: •	:				:		:
		•	•	ě	•	•	•	•	•	•	•	i i	•	•	•	•	•

FY83:	: :FY85	: : : :F	: Y87:	: :FY89	: :	: :FY91	: :	: :FY93	: :	: FY95:	: :	: :FY97	: :	2499	: :	: :FY01
:	:	: :	:	:	•	:	• •	2	:	:	,	:			:	:
				<del></del>	:	:		<del></del>	:			:			:	<del>:</del>
CON	CEPT PHA	ASE :	:	8	:			:	:	:	1	:			:	:
CCMP D	EV-EXP	PROTOTY	PE /		VALID	ATION	FSED	PLT		7		Pol	LLOW-C	M	<u> </u>	
1	:	: :	:	:	:	:	:	;	:	: :		:			:	;
:	:	: :	:	:	:	:	:	:	:	: :	;	:	: :	:	:	:
		plosive		Propell	ants/	Forme	tion (	of Hi	gh Fo	rce Pr	opel	lants	(page	34)	:	:
	6.2		6.3	a /	6.3Ъ	7	:	:	:	: :	;	: :	: :		:	:
:	:	: :	:	:	:	:	*	:	1	: :	:	:	: :		:	:
esesic			f Arm	ment (C	ompos	ite H	eavy l	Metal	Pene	trator	Mat	erial	s) (pa	ige 4	le)	:
	6.3	2		_/:	Z	:	:	:	:	: :	:	:	: :		:	:
:	:	: :	:	:	:	:	:	;	:	: :	:	:	:		:	:
ynthea	is of H	igh Ene	rgy E	xplosive		erene	rgetio	c Exp	losiv	e Form	ulat	ions (	page	4li)	:	:
	6.2		6.	3a / 6	.3b	Ī	:	:	:	: :	;	:	: :		:	:
:	:	: :	:	:	:	:	:	:	:	: :	:	: :	: :		:	:
		onents	for A	rmawent	(page	26)	:	t	:	: :	:	:	: :	;	:	:
6.2/	6.3a	: ;	:	:	:	1	:	:	:	: :	<b>?</b>	:	: :	:	:	:
:	:	: :	:	:	:	:	:	:	:	: :		:	: :		:	:
	d 105-M	M APFSD	S-T (	page 36)	:	:	:	:	:	: :	}	: :	: :	:	1	:
6.34/	:	: :	:	:	:	:	:	:	:	: :	l	: :	: :		:	:
:	:	: :	:	:	:	:	:	:	:	: :	:	: :	: :		:	:
				or High		ity A	ir De	fense	Roun	d (pag	e 28	) :	: :		:	:
6.2	/ð.3a		6.3b		6.4	/	:	:	:	: :	:	: :	: :		•	:
•	:	: :	:	:	:	:	:	:	:	: :	:	:	: :		:	:
onvers	ion Coa	tings f	or De	pleted U	raniu	n (pay	ge 28	)	:	: :	:	: :	: :		:	:
6.2/	6.3a /	: :	:	:	:	:	:	2	•	: :	}	:	: :		:	1
:	:	: :	:	:	:	:	;	:	:	: :	<b>:</b>	: :	: :		:	:
	artle (	page 41		<u> </u>	:	:	:	:	:	: :	:	: :	: :		:	:
	6.3a	I		6.4	:	I	:	:	•	: :	:	:	: :		:	:
:	:	: :	:	:	:	:	:	:	:	: :	}	: :	: ;		:	:
:	:	: :	:	:	:	:	:	:	:	: :	:	:	: :	:	:	:
:	:	: :	:	:	:	:	:	:	:	: :	•	: :	: :		:	:
:	:	: :	:	:	:	:	:	:	:	: :	;	: :	: :		:	:
:	:	: :	:	:	:	:	:	:	:	: :	<b>:</b>	: :	: :		:	:
•	•		•	:	:	:	•	•	•	• •	:	:	: :		:	:

F	T	D	c	D	n	w	P	t

(]

:	: :	: ;	: :	: :	: :	: :		: :	:
FY83:	:FY85:	:FY87:	:FY89:	:FY91:	:FY93:	:F195:	:FY97:	:FY99:	:FYO
			*	<u> </u>	<u> </u>		: :	<u>: : : : : : : : : : : : : : : : : : : </u>	
:	: :	: :	: ;	: :	: :	: :	; ;	: :	:
	CEPT PHASE			: :	: :	<u> </u>	: :	<u>: : :</u>	:
COMP D	EV-EXP PRO	TOTYPE /	VAL	IDATION-FS	ED-PLT		FOLLO	W-ON	/
:	; :	: :	;	: :	: :	: :	: :	; ;	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
ín ingum		Motor for	Anti-Tank	Applicati	on (page 4	la) :	: :	: :	:
<i></i>	6.2 /:	: :	: :	: :	: :	: :	: :	: :	:
:	; ;	: 2	: :	: :	: :	: :	: :	: ;	:
		Density To	ingsten Pen	etrator Al	loys (page	41g) :	: :	: :	:
6.2/	6.3a /:	: ;	: :	: :	:	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
mprove	ment of Gu		or Reduced I	Wear and E	rosion (pa	ge 36);	: :	: :	:
	6.2	/ 6.34	e / 6.3b		6.4	<b>7: :</b>	; ;	\$ §	÷
:	: :	: :	: :	: :	: :	- : :	: :	: :	:
ropula	ion-Muniti	on Interfa	sce Technol	ogy/Charge	Design Te	chnology (	page 41c)	: :	:
	6.2	6.31		7: :	: :	: :	•	: :	:
:	: :	: :	: :	• : :	: :	: :	: :	: :	:
orrosi	on and Pro	tection of	f Tungsten	Alloys for	KE Penetr	ation Appl	ications (	page 28)	:
6.2/		: :	: :	: :	: :	: :	: :	`	:
:	: :	: :	: :	: ;	: :	: :	: :	: :	:
ropuls	ion-Muniti	on Interfa	ace Tech/Ad	v Propella	nts/WV Adv	anced Armo	r Propells	nts (page	41c)
6.2	/ 6.3b		7:	: :	: :	: :	: . :	: " :	:
	: :	1 1	: :	: :	: :	: :	£ :	: :	:
ligh Pe	rformance	Combat Vel	nicle Stati	onary Plat	form Fire	Control (p	age 34)	: :	:
6.2/	6.3a	7:	: :	: :	: :	: :	: :		•
• • • •		***		: :	• •				•
arge C	aliber and	Nuclear A	Armaments T	echnology/	fuze Techn	01000 - F2	for Tank	Ammo frace	40)
6.2/	6.3a /	6.3b /	6.4	7:			1 1	t t	•
<u> </u>			<del></del>	-' ;		: :	: :	: :	:
:	: :		: :	: ;	: :	: :	: ;	: :	:
:	: :	• •	: :	• •	•			: :	•
•		• •		• •	• •				:
•	: :		: :			: :			•
:						: :			
		: :			: :		•		:
:	: :	: :	: :	: ;	: :	: ;	: :	: :	:

: :FY83	: : : :FY8	; 5:	: :FY87	: :	FY89	:	FY91	•	: :7Y93	:	: :FY95:		:FY97		PY99		FY01:	:
<u>:</u>	<u>:                                    </u>	<del> </del>	<u>:</u>	:	<u>:</u>	<u> </u>				<u> </u>				-	-			:
÷,,	! ;	:	:	:	:	:	: :	:	:	:	:		: :		: :		:	:
	CONCEPT P			<del>;                                     </del>	<del></del>	CAT TD	ATION	POPE	- NO -		<u> </u>		FOY	LOW-(				:
:/com	PEA-EXE	PROTO	TIPE	<u>ļ</u>		ANT ID	71101	LOED	LLLI		<del></del>		FUI	-LA/W-(				:
•		•		•	•	•	•	•	•	•	•	•						•
Anti	-Armor Mi	asile	SVATO	n Ont	· Ískasa í	- Design	n (pac	e 22	;	- <u>-</u>	•	•	•		•		•	•
-	6.2	7	:	_ Op.	2	:	: \p=	:	:	:	:		:					:
******	: :		:	:	:	- <b>:</b>	:	•	:	:	:	•	:			:		:
:Self	Forging	Fragme	nt Wa	rhead	(pag	e 4lg	)	:	:	:	:	;	: :	:	: :	: :		;
:/		6.2		7	:	:	: :	:	: :	:	: :	t	: :	:	: :	: :	:	:
:	: :	1	:	:	:	:	: :	:	: :	:	: :	:	: :	t :	: :	: :	: :	ċ
:Shap	ed Charge	s (pag	e 41g	<u>)                                    </u>	:	•	<b>;</b> ;	i	<b>:</b> :	•	: :	<b>:</b>	: :	:	: :	: :	:	:
:/	6.2				:	:	:	:	: :	:	: :	:	: :	:	: :	: ;	:	:
:	: :	:	:	:	:	:	:	:	: :	:	: :	•	: :	: :	: :	: :	: :	;
:Cont	rol Syste	m Deve	lopue:	nt (A	TAADS	) (pa	ge 28)	)	:	:	:	:	: :	:	: :	: :	:	:
:/	6.2	6.	3a /	:	:	:	:	1	:	:	: ;	:	: :	:	: :	: ;	:	:
:	: :	:	:	:	•	:	: :	:	:	•	:	;	: :	:	: :	: :	:	:
:Iner	tial Comp	onent	Devel	opmen	t (AT	AADS)	(page		<u>.</u>	<u> </u>	<u> </u>		<u> </u>					:
:/								6.1									/	:
:	: :			:	:	<b>:</b>	:	:	:	:			. :					:
: IGW	Correlate	r (pag 3a	e 411	,	:	:				:			. :					í
<u>:/</u>	·	<u> </u>	/	:			•	:		•								:
	: tic Energ	10 and	i trata	i va fa	r Cui	i dad W	i innil	/ W	ra Fua	i Lacit	v Mia	i oilaa	Danai	ratus	Ca (pa		9)	•
	.2 /	y rene	•					• • / my	Perve	•	y nila:	PITEO	. Lene	· aco	s the	ige se	•	•
·1	<del>;</del> /	•	•	•	•	•	•	•	•	•	•	•	•		•		•	:
•		•	:	•	•	•	•	:	•	- •	:	•			•			:
:		:	:	•	:	:		:	:	·	:	•	:				•	:
•	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	•	: :	:	:	:
:	: :	:	:	:	:	:	:	:	:	:	1 :	:	: 1	:	: :	: :	: :	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	: :	:	: :	: :	•	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	: :	:	: :	: :	:	;
:	: :	;	:	:	:	:	:	:	:	2	:	:	:	:	: :	;	:	:

Ci

0

ij,

:	; ;	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
FY83:	:FY85:	:FY87:	:F	Y89:	:FY91	:	:FY93	:	:FY95:	:	:FY97	:	:FY99	:	:FYO
:	: :_	: :	;	:	:	:	<u>:</u>	:	: :		:	:	:	<u>:</u>	:
	: :	: :	:	:	:	:	:	:	:		:	:	:	:	:
∕7 сом	CEPT PHASE	: :		:	:	:	:	:	: :	:	:	<b>:</b>	<b>:</b>	:	<u>:</u>
COMP D	EV-EXP PRO	COTYPE /		VAL	IDATION	-FSEI	)-PLT		<i>T</i>		FO	LLOW-	ON		
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	-:-
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
Combat	Vehicle Te	chnology	/Eleva	ted Ki	netic E	nergy	, Weap	on Pr	ogram	(pag	e 26)	:	:	:	:
6,37	: :	: :	:	:	:	:	•	:	:	;	:	<b>:</b>	:	:	:
	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
Shape C	harge Techi	nology (	Dage 4	1g):	:	:	:	:	: :	:	:	:	:	:	:
	6.3a		•	:	:	:	:	:	:	:	:	:	:	:	:
	: :	: :				•	:	:	:	:	:	:	:	:	:
)evelor	ment of Im	proved V	erv Hi	oh Bur	nino Ra	ite Pi	rope11	anta	(page	30)	•	•	•	•	:
	6.2	7	6.3a	7	6.3	Ь	7	6.4	7	:	:	- :	- :	:	:
		<del></del>	•	<del></del>		•	•	•		•	•	•	•	•	•
Ramid S	olidificat	ion Tech	กลใกยบ	for A	rmament	Mate	riale	(nac	e 41e	5	•	•	•	•	•
	.2 /6.			4	*	•	•	, bre		•	•	•	•	:	•
<u> </u>				:	•	:	:	:	•	•	•	•	•	•	•
Vinatio	Energy Per	natrator	a for	Cuided	Minail	· • • • • • • • • • • • • • • • • • • •	ATC-No	n Awi	e samme i	tric	(3D)	(page	38)	:	:
THELIC	6.3a	7.		•		. 60,02	TID NO		·	•	•	·	•	•	:
		······································	:		:	:	:		:	:	:	•	•	:	:
	anal and M	i . ninkanan	aa Sim	mlifia	elian a	· · F · Com	ahat U	• ehícl	le Fire	· · Con	· trol	(page	. ( 1 a )	•	:
operati	onal and Mo	aintenan	ce şım	PILLIC	at Ion o	L COL	BDAL A	enici	e File	e Con	LIGI	, bage	414/	•	•
<del></del>	<u> </u>	-/: :	•	•	•		•	•	•	•			•	:	•
		:		, :		:	:	:		:	:	•	:	•	•
NEXT GE	neration o	r proper	lants	( page	412)	:	:	:	2	:	<u>.</u>	:	<u> </u>		•
	6.2	/:	:	:	:	:	:	:	:	2	:	:	:	:	:
:	: :	: :	:	:	:	:	<b>:</b>	:	:	:	:	:	:	:	:
ACV-L F	emote Sens	or Packa	<u>ge (</u> pa	ge 20)	:	:	:	:	:	:	:	:	1	:	:
	6.3a		/:	:	:	:	:	:	:	:	*	٤	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
Low Cos	t Common M	odule Fi	re Con	trol (	page 40	)	:	:	:	:	2	:	:	:	*
6	.3a /:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	1 1	: :	:	:	:	:	:	:	:	:	:	•	:	:	:
Improve	d Conventi	onal Arm	ament	Svacem	(page	36)	:	:	:	:	:	:	:	:	:

<b>PCC</b> T	PROGRAM
FUUT	

:							-				:	•	4	•	•	•	<del></del>
183:	:FY85	_	FY87:	:	FY89	:	:FY91		FY93:		FY9	5:	:FY:	17:	-	99:	:FYO
:	: :	:	:	:			1		:			:	3	:	:	:	:
:	: :	:	:	:		:		: :		-	:	:	:	:	:	:	
7 cor	CEPT PHA	SE :			1		¥	: :	:		*	:	:	. :	:		_ <b>:</b>
COMP I	EV-EXP F	ROTOTY	Abe \			ALI	MOLTAC	-PSED-	PLT		7		1	OLLO	-ON		
:	: :	:	:	:		:	3	: :	:		:	:	:	:	:	:	:
:	: :	:	:		;		:	: :	1	ľ	:	:	:	:	:	:	:
ectro	magnetic						:	: :	:	-	:	:	<u>:</u>	<u>:</u>	:		:
	6.2		5.3a/	<u> </u>	6.3ს	<u></u> ,							6.4				
:	: :	:	<b>:</b>	:	:	:	:	: :	:		:	•	:	:	:	:	:
Tech	nology (	page 4	40) :	: z			<u> </u>	<u>: :</u>	:	· , .	<u>:</u>			<u>:</u> -	<u>:</u>	<u> </u>	<b></b> :
	6.2		<u> </u>		<u></u>		6.	3 b					a	6.4			_/:
:/_		6.	.3a				:	: :	•	;	:	•	:	:	:	4	:
:	: :		. , :		, 4			: :				:	•	7	:	•	•
2 1.86	er Range	rinde	r (pa	ige 24	, ;		1	: :	•			:	•	•		4	•
3/6	<u>4</u> /:	•				:	•	: :			:	:	:	:	•		:
	ntrol fo	์ เคยเลโ		i Inhila	Cami	; .a. 1	: Vabíal	: :	ة حدة خدد			30)	•	•	:	•	•
.2/	6.36	VE RIEN	nra r	morre	COM	JAL '	VE11111	e ober	ACTIVE.	. ()	Page	307		•	•	•	• •
<u>,</u>	. 0.36		:			•	•		•	•	:	:	:	:	:	•	•
:	•	:	-6		•		:	• •		•	•	•	;	:	:	:	•
:					,	•	•			•	•	•	•	•	•	•	•
:	•					•	•	: :	-		•	•	•	•	•	•	•
-			:				:	: :	•		:	:	:	:	-	•	:
:	: :			: :			:	: :	•		:	:	:	:	•	:	:
:	:	:	2	: :	:	:	:	2 :	:	:	•	:	:	:	:	:	:
:	: :	: :		: :	:	;	:	: :	:	:	:	•	:	:	:	:	:
:	: :	:	:	: :	:	:	:	: :	:	;	:	:	:	:	:	:	:
:	: ;	: :		: :		:	:	: :	. :	}	:	•	::	:	:	:	;
:	: :	: :	:	: :	:	:	:	: :	:	:	:	:	:	:	ŧ	:	:
:	: :	: :	:	: :	:	:	:	: :	•	;	:	:	¥	:	:	:	:
:	: :	:	:	: :	:	:	:	: :	7	;	:	•	:	1	:	:	:
:	: :	: :	;	: :		:	:	: :	: :	:	:	:	:	:	:	:	:
:	: :	: :	:	: :		:	:	: :	:	:	:	:	:	:	:	:	:
:	: :	: :	;	: :		:	:	: :	: :	;	1	:	2	:	:	:	1
•	: :	: :	:	: :		:	:	: :		!	•	•	4	2	•	:	:

: FY83:	: : :FY85:	: : :FY87:	: :FY89:	: : :FY91:	: : :FY93:	: :FY95:	: : :FY97:	: ::	: :FY01
		.F10/.				101931	£F17/;	4 .	: : : : : : : : : : : : : : : : : : : :
<del>:</del>		<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>
77 cond	CEPT PHASE	: :	: :		: :			: :	:
	EV-EXP PRO	TOTYPE /	VA	LIDATION-PS	ED-PLT		FOLLO	W-ON	<del></del>
:	: :	: :	: :	: :	: :	: :	: :	: :	-
:	: :	: :	: :	: :	: :	: :	: :	: :	:
inetic	Energy Mi	ssile (pag	e_38) :	: :	: :	: :	: :	: :	:
:		6.3a		: :	: :	: :	: :	: :	:
:	: :	; :	: :	: :	: :	: :	: :	: :	:
idvance	d Commande	rs Vehicle	Sight (A	CV-I) (page	20) :	: :	: :	; ;	:
:	: :	$\int 6.3a$	6.3b /:	: :	: :	: :	: :	: :	:
:	: :	:	: :	: :	1 1	: :	: :	: :	:
Cank Sm	art Muniti	one (page	41i) :	: :	: :	: :	: :	: :	:
	6.2	/:	: :	: :	: :	: :	: :	: :	2
:	: :	: :		: :	: :	: :	: :	: :	:
ligh Ve	locity AT-	Munitions	(page 34)	: 3	: :	: :	: :	: :	;
/ 	6.2		/:	: :	: :	: :	: :	; ;	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
SLAV (	page 24)	<u></u>	<del>;</del> :	: :	: :	: :	: :	: :	:
	6,3		/ :	: :	: :	: :	: :	: :	:
	· · _ ·				• • • • • • • • • • • • • • • • • • • •	: :	: :	: :	:
101t1-5	ensor Targ	et Acquisi	tion Syst	ena (MTAS) (	page 41a)	1 1	: :	: :	
ــــــــــــــــــــــــــــــــــــــ	6.3a, 6.3	<u> </u>	•			<b>3 3</b>		I =	Ī
			: : : : : : : : : : : : : : : : : : :	50)					:
na vance	d Gunner's	Signt (AC	·Λ-ΙΤ) (δα	ge 20) :	: :			: :	2
:	7 0.34	0.30/							•
	Muzzle Se		- 30)						:
ynamic $\sqrt{6}$		narng (bag	,6 30) :		: :				1
بنجب	4/:			: :					•
i 	i i	j i Skisa Almo			s (page 24)				:
	6.2 /:	TOTOLI MIRO	TTCHAS BU	a Fracessor	B (Page 24)	, , ,	•		
لسب	<u>~</u> /:	: :			• •				•
:	• •						• •		
ě	• •							: :	

FY83:	: FY85:	:	: 87:	: :FY	:	: :FY9	1.	:	: 93:	: :FY	:	:	97:	: :FY99		FY01
.103:	1110):	182	.6/:			**17	•		,,,		•	•	9/i		•	; F 1 U 1
	<del></del>	<del></del>	<del></del> ;	<del></del>	<del></del>		·	÷	<del></del>	<del></del>	<del></del>	<del></del> -	<del></del>		<del></del>	
T con	CEPT PHA	CP .	:	:	•	•	:	:	:	:	:	•	:			:
COMP D	EV-EXP P	RUTOTY	R	<u></u>	VAT.	DATIO	N-PSE	D- PI.1	r	<del></del>		<del></del> -	FOLLO	J-OH		
***************************************			<del></del>	•		:	*		·		•		. 0000		:	
antove	d Hon-St	anderd	Condi	tion :	Sensor	(DAG	e 36)	:	:	-	•	•	•	•	: :	2
/	6.2 7:	:	:	:	:	:	:	•	•	•	:	-	•	1		
- 4		•		•	•	:	2	•	2	:	1	•	1	2	1	
w Cos	t Imagin	z Seeke	r Opt	ions	Dage	40)	:	:	2	:	•	•	:	:	: :	ŧ .
6.2		:	1	:	:	:	:	:	:	:	:	2	•	:	:	
		•	i	•	:	:	:	;	:	:	:	:	:	:	: :	2
M Har	dening o	f Rangi	ne El	ectro	nice (	page	4le)	:	:	:	:	:	:	:	: :	}
5.36/	: :	:	:	:	:	:	:	:	:	1	:	:	:	:	: 1	ł
	: :	:	:	:	:	:	:	:	:	:	:	:	:	1	; :	:
bicle	Dynamic	Sensor	e (pa	ge 411	k):	:	:	:	:	2	:	:	:	:	: :	;
$\sqrt{6}$ .	-	2	:	:	:	:	ŧ	â	ā	•	:	:	:	:	: :	<u>:</u>
:	~ : :	:	:	:	:	:	:	:	2	1	1	:	:	:	2 2	;
ery Lo	ng Kinet	ic Ener	gy Pe	netra	tora (	page 4	41K)	:	:	:	:	:	:	:	: :	ţ.
5.17	: :	:	:	:	:	:	:	:	:	:	:	:	1	2	1 1	}
<del></del> :	: :	:	1	:	:	:	:	:	:	:	:	:	1	1	1 1	;
arhead	/Fuze Te	chnolog	y Syn	thesi	s (pas	e 41k	):	;	:	_:		_ :	:	:	: :	<u>}</u>
							6.	2								
:	: :	:	:	:	1	:	:	*	:	:	:	:	:	1	1 . 1	1
dvance	d Multi-			r'a S	ight (	(Multi	-Sens	or T	arget	Acqu	ísiti	où g	Guida	nce Sy	s) (pag	çe 2:
:	/ 6.3	a, 6.31	<u>.</u> /:	:	:	:	:	:	:	:	:	:	1	2	: :	ł.
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	\$	1 :	
:	: :	:	:	:	:	:	:	:	2	:	:	:	:	:	: :	ł.
:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	;
:	: :	:	:	:	1	:	:	:	:	:	:	:	:	:	: :	:
:	: :	:	:	:	:	:	4	:	:	:	:	:	;	:	: :	;
:	: :	:	:	:	:	:	:	:	:	:	:	:	2	1	:	:
:	: :	:	:	:	:	:	:	:	:	:	:	:	1	1	1 1	
:	: :	:	;	:	:	:	:	:	:	:	:	:	1	:	: 1	
:	: :	:	:	=	:	:	2	:	:	:	:	:	:	:	:	!
:	: :	:	:	:	:	:	:	1	:	:	:	:	:	:	: :	
•		•	•		•		•	•		•		•				•

OBILITY														
: FY83:	: : :FY85:	: ; :FY87:	: :FY89		FY91:	: :FY9	:	: :FY95	• • • • • • • • • • • • • • • • • • •	: :FY97	:	: :FY99	2	: :FY01
	: :	: :	: :		:		:	:	• :	:	:	:	•	•
	<del></del>	<del>-                                    </del>				<del></del>	<del></del>	<del></del>	<u> </u>	<del></del> -	<u></u>	<del>-</del>	<del></del> -	<del></del>
7 CON	CEPT PHASE	: :		: <b>:</b>	:	:	<b>.</b>	_ :	:	:	<u>:</u> _	:	:	•
COMP D	ev-exp fro	TOTYPE /	,	ALIDA	TION-	FSED-PLT		1		FO	LLOW-	ON		7
:	: :	: :	:	: :	: :	1	:	*	:	:	:	:	:	*
;	· · · · · ·	: :	: :	: :	:	\$	:	:	:	:	:	:	:	:
	Mobility F		46)	: :	: :	:	:	ï	<b>:</b>	:	:	:	:	*
<del></del> 6	.1, 6.2, 6	.3/:	:		:	:	•	:	:	:	:	:	:	:
					1				; e	:	:	:	:	:
ink-Au	tomotive T		Concept	LO TO	. WILE	rnate re	era (	page 5	) 1		:		:	:
	<u>_</u>	.2					•	:			:	:	:	:
renemi	ssion Comp	anent News	Lanmert	(nana	56).	•	:							:
Lambur	salon comp	OHERE DEVE	TOPMENL	( pake	- 19/1	6.3				·		<u></u>	-	
<del></del>	<del></del>	<del></del>					<del></del>		•	•	-	<del></del> -	-	<u></u>
ubrica	nts for Co	nventional	/Non-Cor	venti	onal	Engines	(page	52)	•	:	•	:	•	•
	1, 6.2, 6.		:			:	:	:	:	:	:	:	•	•
7	: :	; ;	:	: :	:	:	:		:	:	:	:	:	:
ehicle	Engine De	velopment/	Engine (	Concer	La fo	r Alterr	ate F	uela (	page	58)	:	:	:	:
						6.3				:	1	:	<b>:</b>	:
:	: :	: :	:	:	:	2	:	:	:	:	:	:	:	:
	on Prevent		ige 48) :	: :	:	:	:	:	:	:	1	:	<b>:</b>	:
<u>6.</u>	1, 6.2, 6.	3/:	:	: :	: :	:	:	;	:	<b>:</b>	:	:	:	:
:		• •	: :	: :	:	:	:	:	:	:	:	:	:	:
dvance	d Air Filt	ration (pe	ige 42)		:					<u>:</u>	<u>.                                    </u>	<u>:</u>	<u> </u>	<u>:                                    </u>
						6.2								/
; 	ic and Alt	: 1	1 . (	: . E4\.		:	•				:	:	:	:
	1, 6.2, 6.		ra (baRe	. 50/:		•	•				:	:	:	
	1, 0.2, 0.	· · · · · · · · · · · · · · · · · · ·	• •				:	• .			:		:	:
			• •	•		•	٠	•	•				•	
•1f-Cl	eaning Air	Filter (S	CAP) (ne	90 5/A	.) .		•	•				•	·	•
elf-Cl	esning Air		CAF) (pa	ige 54		:	:			•			•	:
elf-Cl		Filter (8	CAF) (pa	ge 54	;	:	:		: :	•	: :	:	<u>:</u> :	:
elf-Cl			CAF) (pa	ge 54	; ;	•	:		: :	•	:	:	• •	: : :
elf-Cl			CAF) (pa	18e 54	;)	:	:			:			·	: : :

F	CCV	PROGRAM

MOBILITY								_ <del></del>		
: :FY83:	:. :FY85:	: :FY87:	:FY89:	: :FY91	: :FY93	: :FY	95:	: :: :FY97:	: :FY99:	FY01:
: :	: :	::	: :	:	::	: :		: :	<u> </u>	;;
:	: :	: :	: :	:	:	: :	-:-	: :	: :	: :
	CEPT PHASE				<u> </u>					::
:/COMP D	EV-EXP PROT	TOTYPE /	V	LIDATION-	-PSED-PLT			FOLL	OW-ON	<u></u> / :
: :	: :	: :	: :	:	: :	: :	:	: :	: :	: :
	: :	.: :	· ;	: .	: :	: :	:	: :	: :	: :
	istant Trac		nelon (pe	ige 54)	:	: :	2	<u>:</u>	:	: :
:/6.2/		3.3a	/:	•	:	: :	:	:	: :	: :
)	1 :		: :	÷ :		: :	•	: :	: :	1 1
: 6.3	Damper (p	age 40):				: :	•	•		
7 0.3	<u></u> /:	: :					:			
· · · · · ·	t Land Navi	ipation (n	. 57).	•		• •	•			
1/6.2 /	6.34	7.	age Jays	•		• •	:	: :		1 1
1002	<del></del>	-/: :	•	•		•	•			
Track R	ubber Devel	lomment (v	ave 56):	•			•	: :	: :	
:/	6.2		7.	•		: :	•		: :	
1 :	: :	<del></del>					Ţ	• •		•
Horizon	tal Positio	on and Att	itude Sul	svatem (	pase 50)		•			•
:/ 6.	2 7:	: :	: :	:	:	: :	:			
: :	: :	: :	; :	:	:	: :	:			
:Fluidic	Heading Re	eference (	page 48)	2 :	: :	: :	:	: :	: :	: :
:/	6.2	7 :	: :	: :	: :	: :	:	: :	: :	: :
; ;	: :	<del>-</del> : :	: :	:	: :	: :	:	: :	: :	: :
:High Mo	bility Engi	rgy Effici	ent Syste	sa (page !	50) :	: :	:	: :	: :	: :
: :		6.3		;	: :	: :	:	: :	: :	: :
: :	: :	: :	: :	: :		: :	:	: :	: :	: :
: Advance	d Composite	<u>Material</u>	g (page 4	(2):	: :	: :	:	: :	: :	: :
:	6.2		<i>_7: :</i>	:	: :	: :	:	: :	: :	: ;
: :	: :	: :	: :	:	: :	: :	:	: :	3 2	1 :
	Thermal Vi	iewer (peg	e 48) :	:	: :	: :	:	: :	: :	: :
:/ 6.4	_/: :	: :	: :	: ;	: :	: :	:	: :	: :	: :
: :	: :	: :	: :	:	: :	: :	:	: :	: :	: :
: :	: :	: :	: :	:	: :	: :	:	: :	: 2	: :
: :	: :	: :	: :	:	: :	: :	:	: :	: :	: :

OBILITY	•								
FY83:	: : :FY85:	: ::	: : :FY89:	: : :FY91:	: :: :FY93:	: :FY95:	: :	: ::	: :FY01
:	: :	: :	1 :	1 :	: :	: :		:	:
	<del></del>		1 :				<del></del>		
CON	CEPT PHASE	: :	: :	: :		: :	: :	: :	2
	EV-EXP PRO		VAL	IDATION-P	SED-PLT	7	FOLLO	W-ON	
:	: :	: :		: :		: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
dvance	d Tactical	Power Sou	rces (page	44) :	: :	:	: :	:	:
6.2	/ 6.	3b /:	: :	: :	: :	: :	: :	: :	:
:	: :	• • • • • • • • • • • • • • • • • • •	: :	: :	: :	: :	: :	: :	:
rack R	etention &	Control (	page 56)	: :	: £	: :	: :	į :	:
6.2/	6.3a 7:	: :	: :	: :	: :	: :	: :	: :	:
	: :	: :	: :	1 :	: :	: :	2 2	: :	:
ivance	d Track &	Suspension	Materials	/Structur	es (page 44	): :	: :	: :	•
ž		6.34	7:	: :	: :	: :	: :	: :	1
:	: :	1 1		: :	: :	: :	: :		:
ATO/Po	reign Trac	k Analysis	(page 52)	: :	: :	: :	: :	: :	2
	مرجوب مستحدث بالمستحدث			6.2					
<del></del>		<del></del>	: :	: :	<del></del>	<del></del>			
l Abre	ws/M60 Tra	ck Improve	ement (page	52) :	: :	: :	: :	: :	2
6.3a		: `:	: :	: :	: :	: :	: :	: :	1
***************************************	:	: :	: :	: :	: :	: :	: :	: :	:
5-65 I	on Track (	page 42)	: :	: :	: :	: :	: :	: :	:
6.	3a /:		: :	: :	: :	1 1		: :	1
		: :	: :	: :	: :	: :	: :		•
:	: :	: :	: :	: :	: :	1 1	: :	: :	•
lvanca	d Diesel-l	000 HF (D)	oe 44) :						ė
	6.3a	7:		: :					•
•									÷
liabat	ic Engine	Program (	nage 42):			: :	: :	: :	:
-	6.3		7. 7.			•	: :	: :	:
•			<del>' ;     ;</del> ;		: :	• •	: :	: :	:
dvance	d Adiahati	c Technol	gy (page 4	2):	: :	• •			•
4 4 10 10 6	6.		APT TARKE A	-/: :			4 4	• •	
	<u> </u>	<del></del>	<del></del> /:		• •				
							• •		•
1	:	: :	: :	: :	:	: :	: :	: :	:
:	: :	: :	: :	; ;	: :	: :	: :	: :	:

DRILITY														
:	; ;	, mug 7 -	. 1731 O	:	:	:	:	:	; .mv05		?	:	:	:
FY83:	:FY85:	:FY87:	:FY8	<b>7:</b>	:FY91	:	:FY93	•	:FY95		Y97:	:FY	99:	: FY(
		<del></del>	<del></del> -	•	<del>-                                    </del>	<del>:</del> -	<u>:</u>	<del>:</del>	<del>-</del>	<del></del>		<del></del>	+-	<del></del>
7 con	CEPT PHASE		:	:	:	:	•	:	:		:	•	i	:
COMF D	ev-exp Pro	OTOTYPE /		VALI	DATION	-FSED	-PLT		$\mathcal{I}$		POLL	W-ON		
:	: :	: :	:	:	:	:	:	;	:	: :	:	:	-:-	•
:	·	· :	:	:	:	:	:	:	:	: :	:	:	:	:
inctio	nel Fluide	page 50	)) :	:	:	•	:	÷	: :	: :	:	:	1	:
	6.2, 6.3		:	:	:	:	:	:	:	: :	:	:	:	:
i Isrance:	d Turbine	Fraine/Co	: v≠amia D	; 	i	: (500	ة م 44`	· ·	•		:		•	:
	.2 /:	i i	* ************************************		i atuls	i ≀he-R	, <del>-</del> - 44,	•	•		ě	•	•	•
	<u>:</u> /:	: :	:	:	:	:	:	:	:		:	•	:	:
ınk-Au	tomotive 1	rechnology	/Advanc	ed Tu	rbine	- (Cera	mic (	Coat in	12a) (1	nage 56	) :	:	:	:
.27	: :	: :	:	;	:	:	:	:	:	: :	:	:	:	:
:	: ;	: :	:	;	:	:	:	:	:	:	:	:	:	:
vance	d Integrat			s t esa	Compet	itive	Des	ign (j	page 46	: (4	:	:	:	:
		6.3	а						7; ;	: :	:	:	:	:
;	: :	: :	:	:	:	:	:	:	1 :	: :	:	:	:	:
ectri	c Hybrid I			:		<u>:</u>	:	,:	: :	: :	:	:	:	:
		6.3	<u>.</u>				/	<b>'</b> :	:	: :	:	:	:	:
•	: :	•	:	:	•	:	:	:	•		:	•	:	1
:	: :	: :	:	:	:	:	:	:	:		:	:	:	:
:	: :		•	•	•	:	:	:				:	:	:
•	•		•	•	:	•	•	•			:		•	:
:	: :	: :	•	:	:	•	:	:		•	:	:	:	:
:	: :	: :	:	:	:	:	:	:			:	:	:	:
:	: :	: :	•	•	:	:	:	:	:		:	•	:	:
:		: :	:	:	:	:	:	:	:	:	:	•	:	:
:	: :	: :	:	:	:	:	:	:	2	: :	:	:	:	:
:	: :	: :	:	:	:	:	1	:	: :	:	:	2	:	:
:	: :	: :	:	:	:	:	:	:	:	. :	:	:	:	:
:	: :	: :	:	:	2	:	:	:	2 :	: :	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	: :	:	:	:	:
:	: :	: :	:	2	:	:	1	:	: :	: :	2	•	:	:
:	: :	: :	:	;	:	:	:	:	:	: :	:	:	:	:

***	1 1	. 7407.		;		1		:	*	:	4 4 4 170	:	•	:	:
83:	:FY85:	:FY87:	:FY8		:FY91	. :	:FY93	-	:FY9		:FY	9/:	:FY99	:	:FYO
	<del></del>	<del></del>	·	<u>-</u> ;-	<del></del>	<del></del>	<del>-</del>	÷	<del></del> -	<del></del> -	<del></del>	<del>-</del>	<del></del>	÷	<del>-</del>
7 con	CEPT PHASE		:	•	:	:	i	•	•	•	:	•	:	:	:
OMP DI	EV-EXP PRO	TOTYPE /		VAL	IDATION	-FSE	D-PLT		7		]	POLLO	W-ON	<u> </u>	
:	: :	: :	:	:	:	:	:	:	:	:	:	:	1	:	
:	: :	: :	:	2	:	:	:	:	:	:	:	:	:	:	:
ombat '	Vehicle Pr	opulsion	/1000 H	P Tra	nemissi	.on ()	page (	6)	:	:		:	4	\$	:
(	5.3a	_7: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :		:	:	:	:	:	:	:	:	:	:	:	:
mplia	nt Suspens			<u>46)</u>	:	:	:	:	:	:	:	:	:	:	:
6.2		6,3a		_/:	:	:	:	:	:	:	:	:	:	:	:
:	•	: :	:	. <b>:</b>	:	• ,	:	:	:	:	:	:	:	:	:
	me/M60 Tra	ick Impro	venent	(page	52)	:	:	:	:	:	:	:	:	:	:
6.34	_/: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
. :		; :	:	, <b>:</b>	:	:	:	:	•	:	I	:	2	:	:
	dent Exter	nal Susp	ension '	page	50)	:	:	:	:	:	:	:	:	:	:
<u> </u>	6.3.	: ;	:	:	:	:	:	:	•	:	*	:	:	:	:
, , , , ,			1	•	3	1		•	•	•	•	•		:	:
7-40 I	on Track (	.page 42)	•	:	:	:	:	•	1	•	:	:	:	:	I
<del>,0.</del> .	/		•	•			•		•	•	•	•	•	1	ī
. Wain	tenance Be	i i	al E Do	ة مطبيقية	al Unb	Čana.	. 541	•	•	•		•	•	•	•
/ main	6.2	6.34 /:		MIT WITH	er nub	( haß.	• )4/	•	•	•	:	•	•		
•/	<del>****</del>	<u> </u>	•	:	:	:	:	:	:	:	•	•	•	•	•
•	: :	: :	:	•	;	:	:	:	•	•	:	:	•	:	:
•	• •	: :	•	•	•	:	:	:	•	•	•	:	•	•	:
•	; ;		:	•	•	:	•	•	•	•	•	•	•	•	•
•		: :	:	•	:	1	2	•	•	:	•	i	•	:	:
:	: :	: :	1	:	:	:	:	•	1	1	•	1	:	:	:
•	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	•	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	ŧ	•	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	ŧ	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	<b>*</b>	:	ž	:	:	:	:	<b>\$</b>	:	;
									_	_	_				-

		<del></del> -										<del>.                                    </del>	<u> </u>				<del></del>
: FY	83:	:FY85:	: FY8	7:	:FY89	:	FY91:	: :	: :FY93	:	:FY95	:	:FY97	· ·	: :FY99	: ):	:FY01:
:	:	: :	:	:	:	:	:			:	:	:	1	:	•	:	: :
:	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	-	-	: :
:/~	CONC	EPT PHA	SE :		\$	1	: _ :		:	:	:	3	:	:	:	:	: :
:7c	OMP DE	V-EXP P	ROTOTYPE	7	`	VALID	ATION-	FSED	PLT		7		FO	LLOW-	ON		7:
:	:	: :	:	:	:	:		:	:	:	ε	:	:	:	:	:	: :
:	:	: :	:	:	:	:	:	:	:	:	:	<b>;</b>	:	:	:	:	: :
: Ac	oustic	Sensor	s (page	60)	:	:	: :	:	:	•	:	:	:	;	:	:	: :
:_		<b>7: :</b>	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
:	-:	: :	:	1	:	:	: :	:	:	:	:	1	:	:	:	:	: :
:TA	rget B	ackgrou	nd Signa	ture a	nd En	viron	nents	(pag	e 78)	:	:	:	:	:	:	:	: :
:		6.2		/	:	:	: :	:	:	:	:	:	:	t	:	:	: :
:	:	: :	:	:	:	:	: :	:	:	:	:	:	:	:	:	<b>:</b>	: :
:Ch	emical	Alarm '	ľech (pa	ge 66)		:	: :	:	:	:	:	:	:	:	:	:	: :
:		6.2			1	:	: :	:	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	: :
: AD	DEV of	Automa	tic Liqu	id Age	nt De	tecto	r, XM8	35, XI	M86 (	page	60)	:	:	:	:	:	: :
:/6	.3/	6.4		:	:	:	: :	:	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	: :
: F1	at Pan	el EL D	isplays	(page	70)	:	;	:	:	:	:	:	:	:	:	:	: :
:/_				7	:	:	:	:	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	:	:	:	:	:	1	:	:	:	:	: :
: Mu	lii-Se	neor Ai	r Defens	a Acqu	iiait i	on (p.	<b>age</b> 74	4)	:	2	:	:	:	:	:	:	: :
: <i>[</i> _	6.2	7: :	:	:	:	2	: :	•	:	:	:	:	:	•	1	:	: i
:	:	: :	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	: :
		_Non-St	andard C	onditi	on Se	nbors	(page	e 70)	:	:	:	:	:	:	:	:	: :
:	6.2	/: :	:	:	:	:	:	:	:	•	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	•	: :
_	_	Dynamic	s Sensor	(p <b>ag</b> e	: 79a)	:	:	:	:	:	:	:	:	:	:	:	: :
:/6	<u>·2</u> /	: :	:	:	:	:	: .	:	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	: :
		vironme	nt Activ	e RF S	ecker	Test	Bed (	(page	74)	:	:	:	:	:	:	:	: :
:/6	<u>.2</u> /	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
1	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	:	ŧ [.]	:	:	:	:	:	:	:	:	: :
:	:	: :	:	:	:	:	ž .	:	:	:	:	:	:	:	:	:	: :

:	: :	::	:	:	2	:	:	:		:	:		\$ - 1702		
FY83:	:FY85:	:FY87:	:FY8	9:	:FY91	:	:FY	93:	:FY9	: כּי	:FY	9/:	:FY	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:FYO1
<del></del> :_	- <del></del>		<del></del>	<del>-                                    </del>	<del></del> -	<u> </u>	<del></del> -	<del></del> -	<del></del>	÷	<del></del> -	<del>-</del>	<del></del>	<del></del> -	<del></del>
— [:] ત્રુષ	CEPT PHASE		:	:	:	:	:	•	•	•	:	•	:	:	•
COMP D	EV-EXP PRO	TOTYPE /		VALI	DATION	i-FSF	D-PL	r	<del></del>			POLLO	W-ON		
COLI D	TV BAL TAO	1011101		:	1	:	:	:		-:-	:	-	:	;	
:		: :	:	:	:	:	:	:	:	:	:	:	:	:	:
cauisi	tion Subay	stem (pag	e 60)	•	:	:	:	:	. :		:	:	:	:	<u>:</u>
<del></del>						6.2	2								
:	<del></del>	: :	:	:	:	:		:	:	:	:	:	:	:	:
uiet R	adar for A	ir Defens	e (page	76)	:	:	:	:	:	:	7	:	:	:	i
6.2 /	6.3a	/:	:	:	:	:	:	:	:	:	:	:	:	:	:
2	; ;	: :	:	:	:	:	:	1	:	:	:	:	:	:	:
anage	Assessment	Concepts	(page	66)	:	:	:	:	:	:	:	:	:	:	:
6.2	_/: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :		:	:	:	•	:	:	:	:	•	:	•	•	:
	Muzzle Se	nsing (pa	ige 68)	:	:	:	:	:		:	:	:	:	:	:
6,2	_/: :	: :	:	:	:	:	:	:	:	:	•	:	:	:	:
• • •	: :	: :			•	:	•	:		•	•	•	•	•	•
	cron IRDA	(page 60)	•	:	•	•	•		1	ī	•	•	•	•	:
1	6.2	: :	:	:	:	:	•	•	•	•	•	:		:	:
: 	s Thermal	Vierer (r	,,,,, i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		:	:	:	:	:	:	•	:	•	•	•
6.4	8 Incinal	Aremer (f	age ou	, • =	•	-	• ÷	•	•	•	:	:	•	•	:
<del>- 0:4</del>	<b>-</b> /: :			:	•	•	•	•	•	•	:	:	•	:	•
The rmal	Weapon Si	phr (nage	79a)	:	•	:	:	:	:	:	:	:	:	:	:
6.3/		7.	• • • • •	•	:	:			•	:	:	:	:	:	:
*			:	:	:	:	:	:	:	:	:	I	:	:	:
fulpli	Line UV-FI	R Tunable	Laser	в (рад	ze 72)	:	:	:	:	:	:	:	:	:	:
6.2			<del>7</del> :	:	;	:	:	:	:	:	:	:	:	:	:
:	: :	<del></del>	:	:	:	:	:	:	:	:	•	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	;	:	:	:	:	:
:	: :	: :	:	:	:	\$	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	1	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	•	•	:	2	:	:	:	:	:	:	:	:	:

*	: :	: :	:	: :	:	:		:		;	:	:		:	
FY83:	:FY85:	:FY87:	:FY89	: :	FY91:	: FY	93:	: FY	95:	: FY	97:	:FY	99:	;FY	0 ]
:_				<u>i</u>				:_			_ <u>-</u>	_ <u>:</u> _	<u></u>	<u> -:-</u>	
<b></b> :	: :	: :	:	: :	:	:	:	:	:	:	:	:	:	:	
/ COV	CEPT PHASE					<u> </u>		;-	_ <u>:</u> _		:_			:_	
/COMP D	EV~EXP PRO	TOTYPE /	· · · · · · · · · · · · · · · · · · ·	VALIDA	TION-F	SED-PL	T				<b>FOLLO</b>	M-ON			_/
:	: :	: :	:	: :	:	:	:	:	:	:	:	:	:	:	
	- :	_; :_	:	: :	. :	:	:	:	:	•	:	:	:	:	
rototy	pe Robotic	Sensor 8	ystem (D.	age 76	) :	:	:	:	<b>:</b> .	:	:	:	:	:	
	6.3a		,, <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	/:	:	:	:	:	:	:	:	:	:	:	
:	: :	•	:	; ;		:	:	=	:	:	:	:	:	:	
rocess	ors for Co	mmon Modu	le FLIRS	(page	76):	:	:	:	:	:	:	:	:	:	
	/:	: :	:	: :	:	:	:	:	:	•	:	:	:	:	
:	: :	: :	:	:		:	:	:	<i>,</i> :	:	:	:	:	:	
lulti-F	unction La	ser Modul	e Target	Acqui	sition	and E	ngage	ment	(bage	74)	:	:	:	:	
	6.2		_/ :	: :	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	: ; :	:	:	:	:	:	1	:	:	;	:	
	ision Auto	Sensor D	evelopmen	nt (pa	ge 74)	:			<u></u>						_
6.2	6,3a									.,					!
:	: :	: :	:	: :	*	:	:	:	:	:	:	:	:	:	
	ic Target	Acquisiti	on (page	64):	:	:	:	:	:	:	:	:	2	:	
6.	3a /:	: :	:	: :	:	:	:	:	:	:	:	:	:	:	
:	: :	: :	:	: :	:	:	:	:	:	:	ï	ş	:	:	
dvance	d Ground t	o Ground	Target A	cquisi	tion R	adar (	page	62)	:	:	:	:	:	:	
			/:	: :	;	:	:	:	:	:	:	:	:	:	
6.	3a /	: :	:	: :	:	:	:	:	:	:	:	:	:	. :	
:	: :	; :	:	: :	:	:	z	:	:	:	:	:	:	:	
il Mark	III Night	Sight (p	age 72)	: :	:	:	:	:	:	ŧ	:	:	:	:	
; <i>[</i>	6.2/ 6.3	7: :	:	: :	:	:	:	:	:	;	:	:	:	:	
:	: :	- : :	:	: :	:	:	:	:	:	:	:	ŧ	:	:	
ACV-L F	Remote Sens	or Packag	e (page	60) :	:	:	:	:	:	:	:	:	:	:	
:	: :		7:	: :	:	:	1	:	:	:	:	:	:	:	
:	: :	: :	:	: :	:	:	9	:	:	:	:	:	:	:	
igita!	Turret De	monetrati	on (page	66) :	:	:		:	:	:	:	:	:	:	
6.2	7: :	: :	:	: :	: -	:	:	:	:	:	:	:	:	•	
		: :	:	: :		:	2	:	•	:	:	:	:	:	
		: 1	•			•		•	•	•	•	•	:	:	

~~																			-
4 774	,02	•	: :FY85	•	: :FY87	•	FY89		FY91		FY93:		: FY95:		FY97:	:FY9	0.4	* EVO 1	;
121	(83	:	: F 107	<u>.</u>		•				•			: F 1 7 ) ;			1119	7 .	:FYO1	:
<u>.</u>		<u></u>	<u>:                                    </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>									<u> </u>	<u> </u>	÷
: ~	$\boldsymbol{\tau}^{i}$	aonae.	: 	: ACE	:	•											•	:	:
4		CONCE			<u>:</u>	<del>;</del> _	•	11177	· ·	PSED			<del>}</del>				<u> </u>	<del></del> ,	
<u>/'</u>	JUM	b DEA	-EXP	PROTO	TYPE	L	· · · · · ·	ALLD	ATION	PSED	PLI				POI	LOW-ON		/	:
;		:	:	1	;	:	:	•	:	•	:		:	: :	:	•	:	:	:
•		2	•	<b>:</b>	:	:	:		:	:	: , :		•	:	: :	:	:	•	:
: Aı	mo	red C	ombat	Vehi	cle H	eavy	- Nigl	1 E V 1.	sion :	System	n (bes	g€ 64.	) :	: :	: :	:	:	:	:
:		:/_6	.3₫		/	:	:	:	:	:	:	•	:	: :	: ;	:	:	:	:
:		:	1	:	:	:	•	:	:	:	: :	:	: ;	: :	: :	:	;	:	:
			dule	Multi	funct	ion L	aser	(page	66)	:	: :	•	: :	; ;	: :	:	:	:	:
: <u>/</u>	6.	3a_/	:	:	1	:	:	:	:	:	:	:	: :	: :	: :	:	:	:	:
:		:	:	:	:	;	:	•	:	:	: :	:	: :	: :	: :	:	:	:	:
			Radar				ge 62		:	:	:	:	:	; ;	: :	: :	:	:	:
<u>:[</u>	6	, 2		6,3a		/6.3b	6.4	:	:	:	:	:	: :	: :	: :	:	:	:	:
:		:	:	:	:	;	:	:	:	:	:	:	: :	: :	: :	:	:	:	:
: A	11 '	Visib	ility	Targ	et Ac	quisi	tion	(page	62)	:	: :	:	: :	: :	: :	: 1	:	:	:
:		:	:/				:	:	:	:	:	:	:	: :	: :	: :	:	:	:
:		:	:	:	:	:	:	:	:	:	: :	:	: :	: :	: :		:	:	:
:M	1 M	iss D	istan	ce Se	nsor	(page	72)	:	:	:	:	:	: :	: :	: :	: :	:	:	:
	5.2		\$	:	:	:	:	:	:	:	: :	:	: :	: :	: :	:	:	:	:
-		•	:	:	:	:	:	:	:		:		:			:	:	:	:
: 2:	ad i	Gener	ation	Cros	swind	Sens	or (p	age 6	0)	:	: :	:	: :	:	: ;		:	7	:
•		:	•	:	:	:/	6.		7	•	•		•			•	•	•	•
:		•	:	:	:	` <u></u>	:	:	:	:	:						•	•	•
:Pi	roc	essor	s for	Comm	on Mo	dule	FLIRS	(pag	e 76)	:	:		:				•	•	•
		.2,6			:	:	:	: '	:	:		•	•				:	•	•
-		:	:	:	:	:	:	•	:	:	•		•				ž	•	•
:W	ide	Area	Neut	raliz	ation	Devi	ce (W	AND)	(DADE	79a)	•						•	•	:
•		•	•	1	6.2		7	_	6.3		7	•	•				:	:	:
:		•	•	<u> </u>		•	•		•		•		•			•	:	:	:
• P	AM '	- Harde	ned C	On te	ser D	anoe f	inder	- Camma	n Mar	- dules	(nece	761				•	:	:	•
. /	- 47	7		·	oer v	ari Rer	• IIUEI	• •	· FIO	* ************************************	· haß,	. 10):				•		•	•
مار:		<u>'</u>	:	:	:	•	•	•	:	•	•			,	, ,		•	•	•
•			:	•		•	•		•	•						;	:	•	:
•		•	•			•	•			•					•	•	<b>.</b>		:
:		:	:	:	•	<del>.</del>			:	•		:		:	:	:	:	:	:
•																			

: :: :FY83:	: :FY85:	: :FY87:	: :: :FY89:	: : :FY91:	: : :FY93:	: : :FY95:	: : :FY97:	1 :	: :
· • • • •	: 100:	:F10/:	: 109:	: : : : : :	: 195;	: : : : :	: 19/:	:FY99:	:FY01:
<del></del>	<del></del>	<del></del>	<del></del>	<del>- ; - ; -</del>	<del></del>	<del></del>	<del></del> -	<del></del>	
. / 7 cor	CEPT PRASE	• •		: :	• •	: :	• •	• •	•
	DEV-EXP PROT	OTYPE /	VAL	IDATION-F	ED-PLT	7	FOLLO	W-OK	<del></del> ;
		:	: :	: :	: :		: :		
: :	: :	:	: :	: :	: :		: :	: :	: :
:3rd Las	ser Radar Te	chnology	Demonstrat	or (page (	50): :	: :	: :		: :
$\frac{6.2}{}$	: :	: ;	: :	: :	: :	: :	: :	: :	
: :	: :	: :	: :	: :	: :	: :	: :	: :	: :
: Advance	ed Multi-Sen	sor Gunne	r's Sight	(page 62)	: :	: :	: :	: :	: :
: :	:/ 6.3a,	6.3b /	: :	: :	: :	: :	: :	: :	: :
: :	: :	: :	: :	: :	: :	: :	: :	: :	: :
: Advance	ed Gunner's	Sight (AC	V-II) (pag	e 62) :	: :	: :	: :	: :	: :
: :	:/ 6.34,	6.36 F	: :	: :	: :	: :	: :	: :	: :
: :		<del></del> :	: :	: :	: :	: :	: :	: :	1 1
	ization Tech			_: :	: :	: :	: :	: :	: :
6.2	/ 6.3a	/ 6.3b	6.4	_/: :	: :	: :	: :	: :	: :
: :	: :	: :	: :	: :	: :	: :	: :	: :	: :
: :	: :		: :		: :	: :	: :	: :	: :
XM22 Au	stomatic Che			ACADA) (pa	age 79a):	: :	: :	: :	: :
:	6.2	6	.4/	: :	: :	: :	: :	: :	: :
: :		: :	: :		: :	: :	: :	: :	: :
	rdening of R	anging El	ectronice	(page 76)	: :	: :	: :	: :	: :
:/ 6.2	6.3b /:	: :	: :	: :	: :	: :	: :	: :	: :
: :		• •		; ;	: :	: :	: :	: :	: :
	Filters, 0	ptical Sw	itches (pa	ge 79a):	: :	: :	: :	: :	: :
:/6,	<u>·</u>	: :	: :	: :	: :	: :	: :	: :	: :
:	: :			(	, <b>:</b> .:	: :	: :	2 :	: :
:Multi-S	Sensor Targe		tion Syste	m (MTAS)	(page /4)	: :	: :	: :	: :
: <u>:/_</u>	6.34, 6.3	<u>b/:</u>	: :	: :	: :	: :	: :	: :	: :
i i		1 7					: :	: :	: :
: Mu 1 t.1-8	Sensor Signa	1 Process	ors (page	/4) :	: :	: :	: :	: :	: :
·	6.2		/ :	: :	: :	: :	: :	: :	: :
	·	: : - 1 p:	- 44	: :		: :	70)	: :	: :
: second	Generation	rocal Pla	ne-Advance	a FLIK Te	ennology (A	FT) (page	/8) :	: :	: :
$\int 6.2$	<u>/:</u>				: :	: :	: :	: :	
: :	: ;	: ;	: :	: :	: ;	: :	: :	: :	: :

:	: :	: :	:	:	: :	:	:	:	: :	:	:	: :	:
183:	:FY85:	:FY87:	:FY89	:	:FY91:	ł	:FY93	:	:FY95:	:FY97	:	:FY99:	1 FY
		<u> : </u>	<u> </u>	<u>:</u>	<u>:</u> :		<u>:</u>	<u>:</u>	<u> </u>	:	:	<u>:</u>	
<b>_;</b> :	: :	: :	:	:	: :	1	:	:	: :	:	:	: :	:
CON	CEPT PHASE			:		-	<u>:</u>	:	<del>;</del>		<u>.                                    </u>		<u>:</u>
COMP D	EV-EXP PRO	TOTYPE /		VALID	ATION-	FSED	-PLT		<u>/</u>	FO	LLOW	-0N	
:	: :	: :	:	:	: :	:	:	:	: :	:	:	: :	:
. :	: :	. : :		<b>:</b>	; :		:	:	: :	:	:	: :	•
	d Maine Tan	k Integrat	ion Stu	dies	(page	80)	:	:	: :	:	:	: :	:
~ - T	RD /	• •	:	:	1 :		•	:	: :	:	:	: :	:
:		• • • • • • • • • • • • • • • • • • • •		:	:		:	:	: :	:	:	: :	
sc nec	ontaminati	on (page a	32);	:	: :		•	<b>:</b>	: :	:	:	: :	:
	<del></del>		:	:			•	: -			:	: ;	:
: :		: : : : : : : : : : : : : : : : : : :	90)	:			•	:	: :	:	:	: :	1
vance	d Prognost	6.2	00)	<del></del> -			:	•	:	:	:	•	•
		6.	<del></del>		·		<del></del> -		:		:		•
							<u> </u>	:	: :	:	:		•
i mhae	Refueling	(200 60)	•	•			•	•		•		: :	•
MIDCE	7.	(bage oo)	:	:		•		•		:	:		•
	' : : :		•		: :					•		: :	•
i Statio	l Handling	i i Vanisment	· K Cunn	i In Di	at well ho	i Stásn	(nem	. 821		•			
106118	6.2	Equipment	. α ουγγ	Ly Di	.5(1100		( Chark	C 02)		•	•		•
<del></del>			:	•	:	:	:	•		:	:		
icrocl	imate Cond	itionine S	Svetam (	nege	82)	•	•	•	: :	:	•	: :	•
T	BD /:	· ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Page	• .	•	:	•	•	:	•		:
		: :	•	•	:	•	•	•	•	•	:	• •	:
:			•	:		•	•	•		:	•	•	•
÷	• •	1 1	•	•			•	•		•	:		:
•			•	:	:		:	•		•	•	• •	•
:				:			•	:		•	:		
•		• •	•	•		•		•	: :	•	•		•
:	: :		•	:		•	•	•		•	:	•	:
:			:	:	: :	•	:	• •	: :	•	:	•	:
-	: :		•	•			•	•	•	•	•		•
•	•	• •	•	•				•	, ,	•	•	•	•
•	; ;	: :	•	•	•			•	: :	•	•	; :	•
•		• •	•	•		•	•	•		•	•		•

12000	PROGRAM

SURV	IV	ДB	IL	ĮΤ	Y
------	----	----	----	----	---

FY83:	FY85:	:FY87:	FY89	FY	91:	:FY93:	FY9	· 5:	:FY97:	FY99:	:FY01
:	<u>: : : : : : : : : : : : : : : : : : : </u>	<u>: : : : : : : : : : : : : : : : : : : </u>	:	<u> </u>		<u> </u>	<u> </u>	:	: :	<u></u>	:
:	: :	: :	:	: :	*	: :	:	:	: :	:	:
T CUF	KEPT PHAST				:		<del>;</del> -	<u>:</u> -		<u>:</u>	
COMP.	ev-exp proi	CITPE /	7	ALIDATI	ON-FSE	D-PLT		<u> </u>	POLLO	W-ON	/
:	: :	: :	:	:	:	: :	:	:	: :		:
. :		: :	:	: :	• /		:		: :	: :	:
ombat	Vehicle Env	/tronmenta	ı Suppo	rt System	re (bed	ge 00/:	•	•	: :		•
	6.3a	/:	:	: :	:	: :	:	:	: :		
			1 1 /		:		•		: :		•
	tive Protect	Lon Matei	tai (pa	ge 88)	:	: :	•	•		: :	•
6.	3b / :	: :	;	: :	•	: :	•	:			•
<u> :</u>		: :	:	: :		: :	:	•			•
BC Tec	chnology (pe	age 96):	<del>.,</del> :	: :	:	: :	:	:			•
	6,2		_/ :	: :	•	: :	•	:	•	: :	:
:	• •	: :	. :	• . • .		: :		•			•
	e Hardening	(Track as	id Suspe	nsion) (	page 1	00) :	:	:	: :	: :	:
<u> </u>	.3a /:	: :	:	: :	:	: :	:	:			ĭ
:	: :	: :	. <b>:</b> _	: :	, <b>:</b>	: :	:	•			:
tanda	rdized Fire	Suppress	on Comp	onentry	(page	98) :	•	:			:
/ 	6,3a		_/:	: :	•	•	:	:			:
:	: :	: ;		: :	:	: :	;	:			:
Advance	ed Counterm	easures/V	hicle I	ntegrate	d Dete	nse Syst	em (pag	e 86)	: :	•	•
· 	6.3b		/ :	: :	:	: :	:	•			:
:		: :		: :	:	: :	:	•			
	limate Cond	itioning :	System (	page 96)	:	: :	:	:	: :	: :	:
(6.3b)	6.4	/ :     :	:	: :	:	: :	:	*	: :	: :	:
:	: :	: ;	:	: :	:	: :	:	:	: :	: :	:
Passiv	e Counterme	asures (p.	age 96)	: :	:	: :	•	:	: :	: :	:
/	6.2	_/: :	:	: :	:	: :	:	:	: :	: :	:
:	: :		:	: ;	:	: :	:	:	: :	: :	:
	Lighting (	p <b>ag</b> e 98)	;	: :	:	: :	:	:	: :	: :	:
/ 6	.2 / :	: :	:	: :	:	: :	:	:	: :	: :	:
:	: :	: :	:	: :	2	: :	:	:	: :	: :	:
:	: :	: :	*	: :	:	: :	:	:	: :	: :	:
:	: :	: :	:	: :	:	: :	ŧ	:	: :	: :	:
•		: :	:	: :	•	: :	:	:	: :	: :	:

83:	:FY85:	:FY87:	1789	. : : :7	: 791:	: :FY9	3:	: :FY95	:	:FY97:	: :F	199:	:FY0
:	: :	: :	:	: :	:	:	•	:	:	: :	:	:	:
:	: :	: :	:	: :	:	:	:	:	:	: :	:		
7 сон	CEPT PHASE	: :	;	: :	:_	*	:		:	: :		_ :_	:
OMP D	EV-EXP PRO	TOTYPE /		VALIDAT	ION-FS	ED-PLT		1		FOL	LOW-ON		
:	: :	: :	:	: :	:	:	1	:	:	: :	:	:	:
:	: :	: :	:	: :	:	:	:	:	:	: :	:	:	:
	Energy Bea	m Reduction	on (page	92):	:	:	:	:	:	: :	:	:	:
	6.3a	:	:	: :	:	:	:	:	:	: :	:	:	:
:	: :	: :	:	: :	:	2	:	:	:	: :	:	:	:
mor D	evelopment	and Demo	Program	(page	86):	2	:	:	:	: :	:	:	:
	6.3a	/:	:	: :	:	:	:	:	:	: :	:	:	:
:	: :	: :	:	: :	:	:	:	:	:	: :	:	:	:
22 Au	tomatic Ch	emical Ai	arm Agen	t (page	: 102)	1	:	:	:	: :	:	:	:
	6.3b	/ 6,4		: :	:	:	:	:	:	: :	;	1	:
:	: :	: :	:	: :	:	2	2	:	:	: :	:	:	:
INGRA	Y,Combat V	ehicle Se	lf Prote	ction (	CVSP)	(page	98)	:	:	: :	:	:	:
6.3	7: :	_: :	•	: :	:	:	:	:	:	: :	:	:	:
	6.4	7: :	:	: :	:	;	:	:	:	: :	:	:	:
:	: :	<b>~</b> ; ;	:	: :	:	;	:	:	:	: :	:	:	:
ce Ma	sk, Combat	Vehicle	Crewman'	s (page	92)	:	:	:	:	: :	:	:	:
.4/	: :	: :	:	: :	:	:	:	:	:	: :	:	:	:
-:	: :	: :	:	: :	:	:	:	:	:	: :	:	:	:
chnol	ogy Base F	forts in	Infrare	d Scree	ening (	page 1	(00	:	:	: :	:	:	:
	€.2	7:	:	: :	:	:	:	:	:	: :	:	:	:
:	; ;	: :	:	: :	:	1	:	:	:	: :	:	:	:
chno1	ogy Base E	fforts on	Multi-S	pectral	. Встее	ning (	page	100)	:	: :	:	:	:
	6.2	7 : '	2	:	:	:	:	:	:	: :	:	:	<b>:</b>
-:-	: :	: :	:	: :	:	:	:	:	:	: :	:	:	:
tegra	ted CVC_C1	othing Sy	stem (pa	ge 94)	:	:	:	:	:	: :	:	:	:
1		.3b /	6.4	<del></del> :	:	:	:	;	:	: :	. ;	:	:
:	: :	: :	:	: :	:	:	:	:	•	: :	:	:	;
:	: :	: :	:	: :	:	:	:	:	:	: :	:	:	:
:	: :	: :	:	:	:	:	:	:	:	: :	:	:	:
:	: :	: :	:	: :	:	:	:	•	;	: :	:	:	;
:	:	: :	:	: :	:	:	:	1	:	: :	:	:	:
-			-		-		-				•		

PCCV	PROGRAM	

J

0

		. T T	

: :Y83:	: : :FY85:	::::::::::::::::::::::::::::::::::::::	: : :FY89:	: : :FY91:	: :: :FY93:	: : :FY95:	: : :FY97:	: ::	: :FY01
103:	: :	: :	: :	: :	: :	; ;	: :	1 1	: :
<del>:</del>	<del>-::-</del>	<del></del>	<del></del>	<del>- : - : -</del>	: :	<del></del>	<del>-                                    </del>	<del></del>	<del></del>
7 CON	CEPT PHASE	: :	: :	: :	: :	: :	: :	: :	:
	EV-EXP PROT		VAI	IDATION-FS	ED-PLT	7	FOLLO	W-ON	
:	: :	: :	1 ;		: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
ombat 1	Vehicle Rol	botics (p	age 88):	: :	: :	: :	: :	: :	:
6	.2/:	: :	ŧ :	: :	: :	: :	: :	: :	:
:	:	: :	: :	: :	: :	: :	: :	: :	:
ntegra	ted Counter	rmessures	Test Bed	(page 94)	: :	: :	: :	: :	:
:	/	5.3	_/: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	• • •	: :	: :	: :	:
		hnology/Pe	enetration	Machanics	Modeling (	page 94)	: :	: :	:
6.2		: :	: :	: :	: :	: :	: :	: :	:
6.3	_/: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: 1	: :	: :	: :	: :	:
	st Bed (pag	ge 98):	: :	: :	: :	: :	: :	: :	:
6.	<u>3a/:</u>	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :	: . :	: :	: :	: :	: :	:
:	: :	: :	: :	: :	: :	: :	1 1	: :	:
:	: :	: :	: :	: :	; ;	: :	: :	: :	:
:	: :	: :	: :	: :	: ;	: :	: :	; ;	:
:	: :	: :	: :	: :	•	: :	: :		:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
:	: :	: :	: :					: :	:
:	: :	: ;	: :		: :	•	: :	: :	:
:	: :	:	: :						•
:		: :					: :		:
:									•
:	: :	: :					: :	* :	:
:	: :		: :	: :	: :	: :			:
:	: :	: :		: :					
:	: :	: :	: :	: :	: :	: :		: :	:
:	: :	: :	: :	: :	: :	: :		: :	:
:	: :	: :	: :	: :	: :	: :	: 1	: :	:

CONCEPT PHASE::::::::::::::::::::::::::::::::::::					-							NICS	FTRON
OMP DEV-EXP PROTOTYPE / VALIDATION-FSED-PLT / FOLLOW-ON  EPS Technology (page 104)  vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  3a/  tronics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: : : :FY	: :FY99:	: :FY97:	: :FY95:	• -	:	: :FY	FY89:	: : : :FY	: : :FY87:	85:		FY83:
OMP DEV-EXP PROTOTYPE / VALIDATION-FSED-PLT / FOLLOW-ON  EPS Technology (page 104)  vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  3a/  tronics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	<u>:</u> ::	: :	<u>: : : - : - : - : - : - : - : - : - : -</u>	: :	:	:	:	: :	: :	:	: :	:
OMP DEV-EXP PROTOTYPE / VALIDATION-FSED-PLT / FOLLOW-ON  EPS Technology (page 104)  vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  3a/  tronics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	; ;	: :	: :	:		:	: :	: :	:	: :	:
OMP DEV-EXP PROTOTYPE / VALIDATION-FSED-PLT / FOLLOW-ON  EPS Technology (page 104)  vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  3a/  tronics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	:_ :	: :	: :	: :	: _	:	:	: :	: :	PHASE	CONCEPT	/7 c
vanced Prognostics (page 104)  control of the prognostics (page 104)  control of the prognostics (page 104)  vanced Diagnostics (page 104)  control of the prognostics (page 104)  tronics (page 104)  6.2, 6.3		W-ON	FOLLO	7	ED-PLT	ON-FS	LIDATI	VAI	7	TYPE /	P PROT	P DEV-EX	COMP
vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	: :	:
vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	: :	:
vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	: :	: :	: :	:	:	:	04) :	page 10	logy (	S Techno	ATEPS
vanced Prognostics (page 104)  6.2, 6.3  EPS Prototype Development (page 104)  vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	: :	: :	: :	:	:	:	: :	· · ·	:		6.2/
6.2, 6.3  EPS Prototype Development (page 104):  .3a/  vanced Diagnostics (page 104):  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	•	:
6.2, 6.3  EPS Prototype Development (page 104):  .3a/  vanced Diagnostics (page 104):  6.2, 6.3  tronics (page 104)  6.2, 6.3	: :	: :	: :	: :	: :	:	:	) :	ge 104)	cs (pag	enosti	nced Pro	dvan
EPS Prototype Development (page 104): .3a/  vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3  /	: :	: :	: :	~*/ :	~~~~	_ ~ ~			<del></del>	. 6.3	6.2		
vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3  /	: :	: :	: :	<b>~</b> : :	-::-	-:-	~ ~;~ `	****	: :	: :	*	<del></del>	:
vanced Diagnostics (page 104)  6.2, 6.3  tronics (page 104)  6.2, 6.3  /	: :	: :	: :	: :	: :	:	4) :	age 104	ent (pas	velopme	voe De	S Proto	TEPS
vanced Diagnostics (page 104) : : : : : : : : : : : : : : : : : : :	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	a7 :	6.30
6.2, 6.3  tronics (page 104)  6.2, 6.3  /	: :	: :	1 1	: :	: :	:	•	:	: :	: :	•	7	
6.2, 6.3  tronics (page 104)  6.2, 6.3  /	: :	: :	: :			•	•	) :	pe 104)	ca (bar	sonost i	nced Dia	dvan
tronics (page 104)  6.2, 6.3  /	: :	;	: :	- <del>-</del> /			·	<u></u>					-
tronics (page 104)  6.2, 6.3	: :	: :	: :						: :		•	: :	<del></del>
6.2, 6.3			•		•						nape 10	onice (	et ra
		: :		- <del>-</del> , :						6.3	6.2	<u> </u>	
mbat Crew Display (page 104)			1 1		<del></del> -		· <del></del> -	<del></del> -		, , ,			•
mbat Crew Display (page 104)			•		; ;	÷		•	;		:	: :	:
	: :		•	• •	• •	•	•	:	e 104)	v (nace	Dienle	at Crew	ombe
			•	•	: :	:	•	•		7.``````	DESPIO	7	/
	; ;	: :	: ;	: :	: :		:	:	: :	': :		<del></del>	4
	•	• •	: ;	: :	: :	:	•	•		: :	:		•
	: :	: :	: :	: :	: :	:	:	:		: :	:	: :	:
	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	: :	:
	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	: :	•
	: :	• •	• •	: :		:	:	•	: :		•		•
				à š		•		:			•		•
							•	•					:
	: :	: :				:	7	:	: :			: :	:
	: :	: :	1 1	: :	: :	:	:	•	:	: :	:	: :	:
	:	: :	: :		: :	:	:	:	: :	: :	:	: :	:
	: :	: :	: :	: :	: :	:	:	:	: :	: :	:	: :	:

4

**(**|)

THIS PAGE INTENTIONALLY LEFT BLANK

 $c^{3}I$ 

<del></del>				<del></del>				<del></del>	
FY83:	:FY85:	:FY87:	:FY89:	:FY91:	:FY93:	:FY95:	FY97:	:FY99:	:FY01
	: :	_: :	<u>:</u> :_	. : :	: :	: :	_1_3	: :	.:
:	: :	: :	: :	: ;	: :	: :	: ;	; ;	:
:	: :	: :	: :	: :	: :	: :	: :	: :	:
Wideban	d Propagat	ion Measur	ement Prog	ram (page :	18) :	: :	: :	: :	:
/	6.2		: :	: :	: :	: :	: :	: :	:
	: :	: :	: :	: :	: :	: :	: :	: :	:
Microel	ectronic P	ackaging (	All Vehicl	es) (page	10) :	: :	: :	: :	:
1	6.2		/: :	: :	: :	: :	: :	: :	:
:	: :	: :	<b>-:</b> :	: :	: :	: :	: :	: :	;
Numeric	al Electro	magnetic C	ode (page		: :	<u>: :</u>	_:_:	: :	:
/				6.1	6.2				/
:	: :	: :	: :	: :	: :	: :	: :	: -:	
Vehicle	<u>Communica</u>	tions Capa	bility in	MOBA/MOUT	(page 16)	: :	: :	: :	:
1 6.2	_7: :	: :	: :	: :	: :	: :	: :	: :	:
1	:		: ; :				: :	: :	:
Finer O	ptic Trans	mission Sy	stem (Loca	1 Distribut	tion) (pag	e 8) :	: :	: :	:
6.3	b / 6	<u>4</u> /;	: :	: :	: :	: :	: :	: :	:
	:		: :	: :	-; ;	<b>(: ;</b>	: :	: :	:
		mission Sy	stem (Long	Haul) RDT	ME (page 8	<u>) :                                     </u>	_::_	<u>:</u>	<u></u>
1 6	. 4//			6.	7			ستنديب كبينات د تكليات	/
i :	: :	: :				:	: :		:
UHS (1-		uency Synt	hesizers.	UKS Presca	ler (bage	14) :	; ;	: :	•
'/	6.7-			: :	: :	: :	: :	: :	:
; <b>:</b>	: : ,	6.30	/ :	: :	: :	: :	: :	:	:
: ;		(1000)	: :	: ;	: :	• • •		: :	
Ultra H	igh Speed	(UHS) Sign	al Process	ors and 5-	30 GHZ Pre	scalers (p	age 10):	: :	:
:/	6.2		_/: :	: :	: :	: :	: :	•	
	: :		: :		, <b>:</b> .:	: :	: :		:
Automat		ten for Ja	SIZATRI Cus	tom Chips	(page 6)		: :		:
	6.2		_/: :		: :	: :	: :		:
				41 61 11 7		T	: ;	16	:
VHSTC P		e_Anti-Jar	noder-Est	tlefield I	niormation	Distribut	ion Tech (	page 16)	
· /	6.2	_/!	: :	: :	: :	: :	: :		
: :					: :				
	Spectrum L	PI Technol	ogy Battle	tield Info	rmation Di	suribution	Technolog	y (page 14	
:/	6.2	_/: :	; ;	: :	:	: :	: :	; ;	i.

 $c_{31}$ 

: ;	:	:	:	:	:		:	:	<del></del>	: :		:			:	
:FY83:	:FY85	: :FY8	37:	:FY89	:	:FY91:	:	FY93:	:	FY95:	: ;	FY97	:	:FY99:	:	FYO1:
<u> </u>		<u> </u>		<u>:</u>	<u>:</u>			<u> </u>		:				<u>::</u>	:	
i :	;  - <b>M</b> assanas	: 		: - D	:	; c:.13	T E		: n-			in1	,	: , :	:	:
HELWOIT	c manage	nent Inte	gratio	n - b	. attle	rieta	. LRIO	rmat 10	on Die	striou	cion	tecur	io rogi	y (bag	e 12)	1
*	<u> </u>		<del></del>	·′	•	•	•	•	•		,	• •		, .	•	;
:Radio V	lave Pro	pagation	Predic	tion	(page	12)		:				•		•	•	•
:/		7:	:	:	:	:		•	:		:			: :	:	
: :	:	:	:	:	:	: :	:	: :	: :	: :	. :	: :	:	: :	:	
: Army Ta	actical )	Frequency	/ Engin	eerin;	g Pil	ot Sya	tem	(page	6)	: :	: :	: :	: :	: :	:	
:/	/	: ;	<b>2</b>	:	:	: :	:	:	: :	:	: ;	: :	: :	: :	:	:
1 :	:	;	:	:	:	:	3	: :	:	; ;		:	; ;	: :	:	:
	guërneer.	ing Labor	catory	Commu	nicat	ions !	surve	y (HEI	LCOMS,	) (pag	e 10)	) ;	;	: :	:	
:/6.1/	:	: :	:	:		• •	,								:	
:Rault 1	rolerant	Fail-Sc	ift Ele	ctron	ic Ma	i dulea	(	. 6) :	•				, ,		:	•
: :/	/ CIEI AIIC	6		CCLOIL	7		' Pag		•			•			•	
: :	:	7					<u></u>	6.	3 #							7
: :	:	· ·	:	:	:				:	: :		;		: ;	:	
:Nonelec	tromagn	etic Com	ounicat	ions	(All 1	Vehic!	lea)	(page	12) :	: :	; ;	: :	;	: :	:	;
:	6.2	7	:	:	1	: :	:	: :	: :	: 1	: :	: :	: :	: :	:	
: :	:	:	<b>, :</b>	:	:	: ;	;	: :	: :	: :	: ;	: :	;	: :	:	;
Distri	outed Pr	ocessing	(page	6)	:	: :	:	:	:	: :	: ;	: :	: :	: :	:	
: <u>/</u>		6.2	/	:	:	•	:	: ;				. :		:	:	
	./0	.3 <i>e</i> _/	•	•	•			• :							:	:
: Advance	i ed Tectio	cal Power	. Sourc	a. (A	i II Mal	i Sinla	.) (n.		, }						•	•
·/	ad Incel	CAL LOWE	30110	C0 /N	11 46	IACLE	تقضيك	TRE O								<del>7</del>
	<del></del>	: :		······································	:	I :	:			:		: :				
FIST R	adio Net	Simulati	ion Mod	e1 (F	IST-V	) (pag	(8 az	:		: :	:	:		:	:	
:/ 6		: :	:	<b>:</b>	:	: -	:	: :	: :	: :	: :	: :	:	: :	:	:
: :	:	: :	:	:	:	;	:	:	: ;	: :	: ;	: :	:	: :	:	:
: :	:	: :	:	:	:	:	:	:	:	: :	;	: :	:	: :	:	:
: :	:	: :	:	:	:	: :	:	:	:	: :	: :	: :	;	: :	:	1
: :	:	: :	:	:	•	:	:	:	:	: :	: :	: :		: :	;	
: :	:	: :	:	:	:	: :		: ;			:				:	1
:	I	: ;	:	í	:	<b>=</b>	•	<b>:</b>	;	: :	;	:		: :	:	

FY83:	FY85:	:FY87:	:FY89:	: :FY91	: : : :FY93	: : • • • • • • • • • • • • • • • • • •	95:	: FY97	: :Fy99	: : ): :FY	/n 1
:	: :	:	: :	!	: :	 : :	:	: :		1 1	.,,
:	: :			<del></del>	<del></del>	<del></del>	<del></del>			<del></del>	
Chassis	Weapon In	teraction	(al) vehi	icles) (p	age 24)	: :	:	:			
	6.2	1 6.30	<del></del> .	1	: ;	: :	:	: :			
:-	: :		<b>-</b> . :	:	: :	: :	•	:	:	: :	
Product	ize CO2 Mo	dules (all	vehicles	) (page	41c):	: :	:	:	:	:	
6 36):	: -:	2	: :	:	: :	: :	•		:	: :	
:	: :	: :	: :	:	: :	: :	:	:	: :	: :	
Technic	al Vulneral	bility Red	uction (a	ill vehic	les) (page	41i)	:	: :	: :	: :	
6.36/		: 2	: :	:	: :	: :	:	: ;	: <b>:</b>	: :	
		: :	: :	•	: :	: :	:	:	: :	: :	
Researc	h in Physic	cs of Arma	ment (Enh	anced We	er & Erosi	on) (all	vehicl	es) (r	page 41e)	: :	
/	6.3		_/: :	:	: :	: :	:	: 3		: :	
:	: :	; ;	<del>-</del> : :	:	: :	: :	:	: :	:	: :	
Fund of	Sensitivi	ty/Vulner <mark>a</mark>	bility/In	sensitiv	e Hi Explo	sive & P	rop (al	l vehi	cles) (pa	ige 26)	
6.21	63a / 6	6.36 A	1 1	:	: :	: :		: :		: :	
:	: :	:	: :	:	: :	: :	:	: :	: :	: :	
Researd	h in Physic	cs of Arms	ment (Fun	d of Muz	ele Blast	& Contro	1) (all	vahio	les) (pag	e 41e):	
,	6.1		7:	:	: :	: :	;	: :	:	: :	
-:		: ::	: :	:	: :	: :	:	: :	: :	: :	
<u>Relanst</u>	Dev and A	ssessment	of Pire C	ontrol S	ys for Com	bat Vehi	cle Sys	(all	vehicles)	(page 34	):
6.21:	: :	: 1	: :	:	: :	: :	:	: :		:	
:	: :	: :	: :	:	: :	: :	:	: :	: :	: :	
Adverse	Environmen	nt Seeker	Design (M	1113, FVS	, FCCV) (p	age 22)	:	: :	: :	: :	
	6.3	3a t	: :	:	: :	: :	:	: :	: :	t t	
:	: :	: :	: :	:	: :	: :	:	: :	: :	: :	
IR Seel	er for Terr	minally Gu	ided Wear	ons (MII)	3, FVS, PC	CV) (pag	e 38)	: :	:	: :	
6.	3a 1:	: :	: :	1	: :	: :	:	: :	:	: :	
:	: :	: :	: ;	:	: :	: :	<b>:</b>	: :	. :	: :	
lyperve	locity Pen	etration I	nvestigat	ions (MG	D, M1, FVS	MPGS,	FCCV) (	page 3	6) :	: :	
	6.2	_ <i>_</i> /: :	: :	:	: :	: :	:	: :	t	: :	
•	: :		: :	:	: :	: :	:	: :	:	: :	
•											
:	: :	, : :	: :	:	: :	: :	1	: :	:	: :	

FY83:	FY85:	: :FY87:	:	FY89:		: :FY91	:	: :FY93		: :FY95:	 : :	FY97	:	: :FY99	: :	: : 701
::	: :	: :	:	:	<u> </u>	:	:	:	<u>.                                    </u>	: :	:	:	:	:	:	:
:	: :	; ;	:	:	:	:	:	:	:	:	:	:		fr t	:	:
Advanced	IR Imagin	ng Seeke	r & At	utono	Mons	Acqu	isiti	on (M	113,	FVS, 1	CCV)	(page	20)		:	:
/	6.3a		/:	:	•	:	:	:	:	: :	:	:	:	:	:	:
			٠, ٠		,	:	:	:	!	:	3	:	:	:	:	:
	tation Cor	Eroller	(page	e 41 <b>0</b>	1 <i>)</i>	:	:	:		: :	1	: ;	•	:	:	:
عـــــــــــــــــــــــــــــــــــــ	.2	-': :	:	:			•			: :		:		:	:	:
Ballieri.	. Modeling	of Sma	rr Pr	i niert	ilan	i /Dev l	i Piro	i Eard	i Tot W	i i	. /wi	10 51	; ;c r	ceul	: (	200
1	· I	-,· · ·		oject.	LICE	•		· FOL	, ,	eapone.	, (MI	13, FY	, , r	-	(page	. 24)
' <del></del>	<del>';</del>	_; ;		•		•	•	•	•	: :	•	•	•		•	•
Structura	l Investi	gation:	SABO	OT/Pr	oiec	tile (	Dare	41()	,	: :	•	•	•	•	•	•
6.3		· :	:		: :	:	· r -o-	:	:	: :			•	•	•	•
	: :	: :	:	:		:	•	:		: :				:	:	:
Composit	e Material	s for S	ABOT A	Appli	cati	ons (	page	26) :	:	: :	:		;	:	:	:
6.2		: :	:	:		:	•	: :	:	: :	: ;	: ;	•	:	:	:
	: :	: :	:	:		•	:	: :	•	: :	:	: ;	:	:	:	:
Ballistic	Technolo	gy/Pene	trator	rs (M	160, 1	Hl, F	/S, M	PGS, I	.cca)	(page	24)	: :	1	:	:	:
/	6. Z		/:	:		: :	:	:		: :	: :	: :	:	:	:	:
	: :	: :	:	;		: :		: ;		: ;	: :	: :	:	:	:	:
Fari icle	Bean Tech	nology	(PBT)	(M60			<u> 3e 41</u>	c) ;		: :	: :	: ;	;	:	:	:
	6.7				6.3	<u> </u>	(	: :		: :	:	: :	;	:	•	:
Study of	Tank Gun	I I		: (1)		: : 41\ /-		: 612\ .		: :	:	:	:	:	:	:
/_ T. E.D		nouth Li	enomer	14 (M	100, 1	 (I	age	411/		: :	:			:	: :	:
/_ <u> </u>	·:	: :	:												:	<b>:</b>
Fiber Ont	ics Guida	nce Dem	onstra	et ion	(FO	(a=2	M60	MID (	D 400	30) •		,			. :	:
6.30		: :	:		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	page	• •				•	•	•
	· · · ·	: :	:	:			:			• •				•	•	•
Submillin	eter Devi	сев (6.	1 Rese	arch	in	isl an	d HE	L) (M6	0. M	1) (pa	ge 41	i) :	,			, !
:/	6.			:		: :	:	: :	. ,	-, ,, : :		: :				
:	: :	: :	:	:		: :	:	: :		: :			,	:		
Accuracy	Effects (	all veh	icles)	(pa	ge 20	)) :		: :		: :		:		:		3
1	a/	: :	:	:	:	: :		: :		: :	:	:	:	:	:	:
•	: ;	: :	:	:	:	: :	:	: :		: :		:	:	: :	: :	:

¥83:	:FY85:	: FY	87:	:FY89	:	FY91	ŧ	:FY93	:	:FY95	:	:FY97	:	:FY99	:	:FY0
<u>:</u>	<u>::</u>	:	:	1	:	:	:	:	:			<u>:</u>	:	:	:	:
:	: :	:	:	:	:	;	:	:	:	:	•	:	:	:	:	:
uantif	ication c	f Rock	et Mo	<u>to</u> r Sig	natur	e (FV	S, Ml	13, F	OV) (	page 4	41e)	:	:	:	:	:
	6.2			<b>/</b> :	:	:	:	:	:	:	:	:	:	:	:	:
-:	: :	;	-;	<b>~</b> :	:	:	:	:	:	:	:	:	:	:	:	:
unner	Response	to Wea	pon Re	ecoil (	M2, M	3, FV	8) (p	age 3	4)	:	:	:	:	;	:	:
6.2	_7: :	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:
;	-: :	:	:	:	:	:	:	:	t	:	;	:	:	:	:	:
dvance	d Multi-F	urpose	Armer	ent Sy	stem	(amas	) (MP	GS) (	page :	20)	:	:	:	:	:	:
6.	36 /	6.	4	<b>]</b> :	:	:	:	:	:	:	<b>;</b>	:	:	:	:	:
;	: :	:	ŧ	<b>-</b> :	:	:	:	:	:	:	;	:	*	:	:	:
inetic	Energy F	'enetra	tors	for Gui	ded M	issil	es/Sp	ike (1	M2, M	3, FV:	S) (p	agc 3	8)	:	:	:
3a/:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
— ·	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
rmored	Combat V	/ehicle	Tech	nology	(ACVT	) (MP	GS) (	page :	22)	:	:	:	:	:	:	:
7:	: :	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:
- :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
ire Co	ntrol/Wea	ipon Sy	sters	Integr	ation	(MPG	s) (p	age 3	0)	:	:	:	:	:	:	:
	6.3				<i>l</i> :	:	:	:	:	;	:	:	:	:	:	:
-:		:		7	:	;	:	:	:	:	•	7	;	:	•	:
esearc	h in Phys	sice of	Armai	nent (V	leapon	Dyna	mics)	(all	vehi	cles)	(pag	e 41e	.)	:	:	:
	6.2		ገ:	:	;	:	:	;	;	:	:	:	:	:	:	:
•			-';	;	;	:	:	:	:	:	:	:	:	:	:	:
ubmill	imeter Wa	ıve (6.	l Res	earch i	n MSL	and i	HEL)	(M60,	Ml)	(page	41i)		:	:	:	:
	6.1			<del>-</del> /:	:	:	:	:	:	: `	:	:	:	:	:	:
-:	: :	:		-′:	:	:	:	:	:	:	:	:	:	:	:	:
2	: :		•	:	:	:	:	:	:	:	:	:	:	:	:	:
		:	•	•	•	:	:	•	•	:	:	:	:	:	:	•
·	: :	:	:	•	1	:	1	•	:	:	:	:	:	•	:	:
•		:	•	:	:	:	:	•	:	:	:	:	:	1	:	:
:	· ·	•	•	•	•	:	:	•	•	•	•	:	•	•	•	:
:	; ;	•	:	•	•	•	•	•	•	•	•	-	•	•	•	:
•	• •	• .	•	•	•	•	•	•	•	•	•	•	•	•	•	•

<del></del> -				:	:	:	:	:	:	:			:			:	: :
:FY83:	:FY85	:	FY87	:	:FY89	:	:FY91	:	:FY93	:	:FY95	:	:FY97	: :	FY99	:	:FY01:
<u>:                                    </u>	<u>:</u>	::		:	<u>.                                    </u>	<u>:                                      </u>			:				<u>:</u>				<u>::</u>
: :	:	: ;	:	:	:	:	:	:	: :	:	;	;	: :	: :	:	:	; ;
	y Managem	ent (	page	30)	:	:	:	:	:	ì	: 1	3	:	:	•	:	: :
: 6.	<u>/:</u>	:	:	:	:	:	:	:	:		: :		- :			:	: :
	: 	: V-+-	i 	:	:	:	:	:	•							:	
Appli	cation for		TIAL	в (ра	ige ZZ	, ,		•				•				: •	
<i>:</i> '	6.7	-	.——	<del></del>	<del></del> '		•	•	:	,	•	•	•	•	•	•	• •
*Demeo	e <b>А</b> ввев <b>е</b> т	ent Co	Macen	.te (r	1806 2	8)	•	•	•	•	•	•	•	•	•	•	•
: :/	6.21		;	:	:	:	:	:	:	•	:		:			:	:
,	ت بع	:	•	:	•	:	:	:	:	•	•		:	:		•	
:Milli	meter Com	mand (	Guida	nce (	page	40)	:	:	:	3	: :	:	;	:	;	:	: :
	1.2	:	:	:	;	:	:	:	:	:	: :	:	:	: :	}	:	: :
: :	·	6	.3a		<b>]</b> :	:	:	:	:	;	:	:	:	: :	:	:	: :
: :	:	:	;	•	:	:	:	:	:	:	:	:	:	: :	:	:	: :
:Integ	rated Opi	tcs (	page	38)	<u>:</u>	<u>:</u>	<u></u>	<u>:</u>	<u>:</u>				<u>:</u>			<u>:</u>	<u>:</u> :
: :	*/									6.1							!
	*	:		:		:	:	•	:		:		:	:		:	: :
Light	Weight L	aunch	er de	sign	(Comp	osite	) (pa	ge 40	,	•	:		:	. :		:	: :
!/			•		÷	-		•				•	: -		•	•	
·Ontic	al Guidan	i ca Dai	i ro T.i	nka (	Dage	ر (۱۵)	:	•	• ,	•		•		•	<b>i</b>	•	
:/6.2/				): ):	. Page	:	•	• •	•		•		•	•	•	• •	
- / <u>w.c.</u>	<del></del>	:	<u>'</u>	:	:	:	:	:	:		: :		:	:		:	: :
:Optic	al Correl	ator '	Targe	t Cue	ing (	page	41a)	:	:		:	•	:	:	•	:	
:/ 6.		:	:	:	:	:	:	:	:	}	: :	:	:	: ;	;	:	: :
:	:	:	:	:	:	:	:	:	:	1	: :	:	:	: :	:	:	: :
	Reduction	n of (	Close	. Comb	at We	apone	(pag	e 41 <b>a</b>	)	<b>:</b>	:	<b>†</b>	:	: :	:	:	: :
:/62):	:	:	:	:	;	:	:	•	•	:	:	:	:	: :	;	:	: :
: :	:	•	:	:	:	;	:	:	: :	:	: :	:	:	: :	;	:	: ;
	ics (page	41g)		;	:	:	:	:	:	;	:	:	:	:	•	:	: :
<u>*</u>	6.2		:	:	:	:	:	:	: ;		:		:			:	:
· Dwafe	ilo C+-		.1 T		; ;,, (-		:	:	: :		:	:	:			:	: :
	ctile Str		• hr f <i>ij</i>	.egr1		age 4	16)	•					•		; ,		
	6.2,6.30				:	•	•		•								
:	ī	•	i	•	•	•	•	•	•		• :	i	•	•	•	•	

#### FIREPOWER

: Y83:	: : :FY85:	: : :FY87:	: : FY8	:	: :FY91	:	: :PY	:	: : FY	: 95•	: :FY	:	: :FY	; aa.	: :FY01
103.	:F10J:							,,,	• •	,, ;		:		, , .	10
<del></del>	<del></del>	<del></del>	<del></del> -	÷	<del></del>	<u> </u>	<del></del>	<del></del> -	<del></del>	<u>-÷</u> -	<del></del>				
uantif	y Propulsi	on Signat	ura Ter	ect (	'noma 4	(عا	:	:	:	:	:	:	:	:	:
0411011	y rropure.	OH SIRNA	GIC IN	acc ,		.2	<u></u> -	<del></del>	<del></del>		<u></u>	<u>:</u>	_ <del>`</del> _		<u></u> -
<del></del> -	<del></del>	t t		<del>-</del>	•	<u>-</u>	:	<del></del> -		:	•		<del></del>	•	<del></del>
eri ica	l Launch C	oncents (	nage 41	k)	•	:	•		·	•	•	•	:	•	•
<u></u> ),			. hale 41	•	;	:	•	÷	•	•	•	÷	:	•	•
ب النا	• •	: :	•	•	•		;	•	•	•	•	•	:	•	•
e a non	System Acc	uracy (na	ioe 41m)	•	÷	•	•		•	•	•	:	:		;
1 (-	6.34		· · · ·	÷	•	:	•	•	•	•	•	:	:	÷	:
****	- 1 - 7 · · · · · · · · · · · · · · · · · ·	: :	•	•	•	:	•	:	•	•	•	•	•	•	:
frare	d Seeker/S	ensor Tec	hnology	(Dec	e 38)	:	:	•	•		•	•	•	•	•
.2/	6.34		:	•	•	•	•	•	•	•	•	•	-	•	•
· <u>····</u>		36 /:		:	•	•	•	•	:		:	•	•	•	•
:			•	•	•	•	*	•	:	:	•	•	•	•	•
ose C	ombat Lase	r Assault	Weapor	(CCI	AW) (p	age :	24)	:	:	:	:	:	:	:	;
6.3a	1 6.3		:	:	•	:	:	•	:			:	•	•	
****		<del>-</del>	:	•	:	•	:	•	:	:	:	:	:	•	•
rward	Area Lase	r Weapon	(FALW)	(page	32)	:	:	•	:	:	•	•	•	:	•
6.3		6.3		<u> </u>	<b>-</b> /:	:	:	:	:	:	:	:	:	:	:
-;	: :	: :	:	:	- :	:	:	:	:	:	:	:	:	:	:
all Sc	ale Dynami	c Simulat	ion (pe	ge 32	2)	:	:	:	:	:	:	:	:	*	\$
	6.2		<i>j</i> :	<b>~</b> ;	:	:	:	;	:	:	;	:	:	:	:
-:	: :	; ;	<b>—</b> ;	:	:	:	:	:	:	:	;	:	:	:	:
ıll Sc	ale System	Simulati	ion (pag	€ 32)	;	:	:	:	:	:	:	:	:	:	:
<del></del>	6.3a		/:	:	:	:	:	:	:	:	:	:	:	:	ŧ
:	-: :		:	:	:	:	:	:	:	:	:	•	:	:	
:	: :	: :	:	:	:	;	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	;	:	:	;	:	:	:	:	:	:	
:	; :	: :	:	:	:	:	:	:	:	:	:	;	:	:	:
;	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	; :	:	:	:	:	:	•	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
:	: :	: :	:	:	:	:	:	:	:	:	:	;	:	:	:
	• •		•	•	•		•	•		•	•	•	•		•

#### MOBILITY

FY83:	:FY85:	:FY87:	: F	189:	:FY91	:	:FY93	:	:FY95	· •	:FY97	:	: FY94	:	:FY01
:	<u>;:</u>	: :	<u>:</u>	<u>:</u>	<u> </u>	;	: :	<u> </u>	:	<u>.                                    </u>	:	:	<u>:</u> :	:	:
:	; :	: :	:	:	:	:	:	:	:	:	:	:		:	;
:	: :	: :	:	:	:	:	:	:	:	:	:	:	:	:	:
Oxymitr	ide Glass-	Ceramic/I	fiber (	Compos	ites fo	r Eng	ines	PARE	54)	<u> </u>	<u> </u>	i,	<u>.                                    </u>	<u>.                                    </u>	:
	6.2														
7	6.3a			<i>]</i> :	:	:	: :	;	: ;	;	:	:	: :	:	:
<del></del>	<del></del>			_;	:	:	;	:	:	:	:	:	:	:	:
Ml Inte	grated Cou	ntermine	Syste	n (pag	se 52)	:	:	:	: :	:	:	:	:	:	:
6.	3a /:	: :	;	:	:	:	:	:	:	:	:	:	:	:	:
	: :	: :	:	:	;	:	:	:	:	:	:	<b>;</b>	:	:	:
High St	rength Mat	erials &	Compo	nents	(page 5	0)	:	:	:	:	:	:	:	:	:
/	4.2			/:	:	:	:	:	:	:	:	:	:	:	:
:		;		:	:	:	;	:	:	:	:	:	:	:	:
Off-Roa	d Mobility	(page 54	+) :	:	:	;	:	:	:	•	:	:	:	:	:
	6.2	<b>_</b> /: :	:	:	:	:	:	:	:	:	:	:	:	:	:
_ :	•	: :	:	. <b>:</b> _		:			: ;	<b>.</b>	•	:	:	:	:
Fractur	e Mechanic	B & Stat:	ic Fat	igue l	Sehavior	or F	leat E	ngine	Cera	71CB	page	48)	:	:	:
/		:	:	:	:	:	: :	:	:	:	:	•	:	:	•
. :	: :	. :	:	. :,	•	:	:	:	:	•	•	•	:	:	:
Combat	& Tactical	Systems	Dynam	rca (b	age 40)	:	: :		:	:	•	:	:		:
	6.2		:	:	:	:	:		:	:	:	:	:	:	:
; F 11 a-			: 50\	:	:		•				:	:	:	-	:
rull Sc	ale Simula	tion (pa,	<u>;e &gt;∪ /</u>	•	:	:	•	<b>:</b>	•	:	:	:	:	•	:
/			/: /:	•	•	:	:	:			:	:		•	•
i Camamia	a adala Tana		i 		i Validani			:	. 461	:	•	:		<b>:</b> -	:
Ver Bill C	s with Imp	roved 10	ugiines	8 101	venicui	ar El	STUGE	( pag	E 40)		<u>.                                    </u>	<u> </u>	<u> </u>	<u> </u>	<u>:                                    </u>
<del>/</del>	6.2		<del></del>			<del></del>									
<del></del>	6.3a	<del></del>	/:	:	•	:	•		•	4		•			•
i Somttor	mine Detec	tion (no	, , 541	:		-					•		•	•	•
			5° 7.'	:	•	:	•				•				•
<u> </u>	<del></del> '	.3a	<i>J</i> ∶	•	•	:	•				•				
á.	• •		•	•		•	•	•	•	•	•	•	•	•	•
Waste Carp	urpose Det	action C.	eat cm	(nan-	521						•				

### MOBILITY

: ; :FY83;	: : :FY85:	: : :FY87:	: : :FY89:		: 191:	: :FY93	•	: : :FY95:	: :FY97	:	: :FY99:	· FWG)
							•		1717/		: * 199	:FY01
<del></del>	<del></del>	<del></del>	<del>:-</del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del>: -</del> -	<del>:</del>	<del></del>
:Winteri	zation Tec	hnology (	page 58):		:	:	:	: :	:	•	• •	•
	1 6.3		;		:	:	:	:	:	:	: :	:
	: :	<del></del> : :	: :	:	:	:	:	: :	:	:	: :	:
:Cane 21	r Mine Neu	itralizing	System (	page 40	5):	;	:	: :	:	:	: :	•
: _ 6.	· s. 6	<u>36</u> /: :	: :	:	:	:	:	: :	:	;	: :	:
; ;	: :	: :	: :	:	:	:	:	: :	:	:	: :	:
:Wide Ar	es Neutral		evice (WA	ND) (p	<b>u</b> ge 58	):	:	: :	:	:	: :	:
: :	: : <u>/</u> _	6.2	/: :	:	:	:	:	: :	:	:	: :	:
	• • • • •		;	• • •	:	:	:	: :	:	:	: :	:
Analyti	cal Esse D	eve Lopmen		<u>4) : </u>	<u>:</u> _	_:	<u>:                                    </u>	<u>: :</u>		<u>:</u>	: :	
:/		<del></del>	6.2						<del></del>			/
i i .Watamia	le Charact		(14)		; -/-1-	; 41/		; } (:	<b>5</b> 2)	:	: :	:
·Mareria	6.2	ELIZACION	/Advance	d Marei	. THIR '	Vbbr rca.	r fólis	) (page	)Z)	:	: :	:
·/		<del></del>	<del></del> ': :		:	:	•	•	•		• •	•
Structu	res Analys	.is/Modeli:	ne Techni	anee (	1802 5/	۵,	•	: :	•	•		•
:/	6.2		k :		· ·	•	•	• •	•	•		•
"——			~ <u>`</u> ; ;	:	:	;	:	: :	•	:	• •	•
:Analyti	cal Base H	lardware (	page 45)	:	:	:	•	: :	•	· •	•	÷
	e.3a	− _{7:} :		:	•	:	:	: :		:	:	•
:		~·: :	; ;	:	:	:	:	: :	:	:	: :	:
Lightwe	ight Launc	her Design	n (page 5	2) :	:	:	:	: :	:	:	: :	:
7 6:	Z. Ji	: :	: :	:	:	:	:	: :	:	:	: :	:
: :	:	: :	: :	:	:	:	:	: :	:	:	: :	:
: :	: :	: :	: :	:	;	:	:	: :	:	:	: :	:
: :	: :	: :	: :	:	:	:	:	: :	:	:	: :	:
: :	: :	: :	: :	;	:	:	:	: :	:	:	: :	:
:	: :	: :	: :	:	:	:	:	: :	:	:	: :	:
: :	: :	: :	: :	:	:	:	:	: :	:	:	: :	:
: :		:	: :	:	:	:	:	: :	:	:	: :	:
: :	:	: :	: :	;	:	:	:	: :	:	:	: :	:
; ; ;	: ;	: ;	: :	:	:	:	:	: :	:	:	: :	:

SENSING

FY83:	: :FY85:	: :FY87:	: :FY89;	: :FY91	:	FY93		: : :FY95:	; :FY97	: :	FY99:	: :FY01
<u> </u>	<del></del> -	<del></del>	<del></del>	<del></del>	<del></del>		<u> </u>	<del>!</del>	<del></del> -	<del>: :</del>		~ <del></del>
: Effecti	venesa Ass	essment (p	age 68):	•	• •	•	•		:	: :		•
	34 7:	: :	: :	•	:		:	: :	:	:	:	:
· <del>·····</del>		: :	: :	:	:	•	:	: :	:	: :	:	:
Sensor	Field Eval	uation (pa	ge 78):	:	: :	: :	:	: :	:	: :	:	:
/	6.30		<b>]:</b>	:	: :	:	:	: :	:	: :	: :	:
:	: :	: :	: :	•	: :	; ;	:	: :	:	: :	:	:
Automat	ed Systems	Understan	ding (page	64)	: :		:	: :	:	:	: :	:
	<u> </u>		:	:	: :	;	:	: :	:	: ;	:	:
	:		n) /		: : : : : : : : : : : : : : : : : : :		<b>:</b> (	: :	:	:	:	:
Automat		Recognizer	Digital	magery	DACA	3886 V	page	04);	•			:
·	6.2		<del></del> !:	:			•		•			•
Advence	i i d Militery	Computer	Family (MC	T) Pari	nhoral	i la Én	i nna h	 	•	• •	· •	-
Ad value		.30, 6.3		· ·	.p	e Co	uge v !	: :	•	•		:
•	· '	3. 3 <u>6. 3</u>	<del>~</del>	:	:		•	: :	:	:	:	:
Militar	v Computer	Family Pr	oduct Line	Periph	erals	(page	2 72)	:	•	:		:
:/~	<u></u>	: :	: :	: '	: :	;	:	: :	:	:	: :	:
;-	:	· ; :	; ;	:	:	:	:	: :	:	: :	: :	:
Peripho	erals High	Technology	(page 76)	:	: :	:	:	: :	:	: :	: :	:
:/_		6.2		:	: :	•	:	: :	:	: :	: :	:
:	:		: :	:	:	:	:	: :	:	:	: :	:
		tion (page		<b>_:</b>	: :	•	:	: :	:	: :	: :	:
<u>6.2</u>	<u> 16.3</u> a	_/ <u>:</u>	6.36	_/:	:	<b>:</b> -	:	: :	:	:		:
Piles a d			: :	i Dina	: ::::::::::::::::::::::::::::::::::::	: \	:	: :	•			•
Piner (	optic trans	mission Sy	Rream (Poce	ii Distr	Tours	οπ) (	page •	70) :				:
·	<del></del>	<b></b> ': :		•	•		•	: :	•	•	•	•
Fiber (	optic Trans	mission Sy	stem (Lone	Haul)	( DADE	70)	• •	• •	:	:		:
,	6.4 1	6.7	±	;	; puge	: ''	:	: :	:	:	:	:
'	<del></del>	· · · · · ·	<del></del> :	:		:	•	: :	;	:	:	;
Mini Ey	yesafe Lase	r Infrared	Observati	on Act	(page	72)	:	: :	;	:	: :	:
1630	<del></del>		: :	:	: :		:	: :	:	•	: :	:
	: :	: :	: :	:	:	:	•	: :	:	:	: :	:

SENSING

Y83:	:FY85	:FY87:	:FY89:	FY91:	:PY93	·	¥95:	:FY97:	FY99:	FYO.
<del></del> -	<del></del>	: ;	- : :	: :	;	: :	:		<del></del>	•
	ld Detection	on Using R	econnaissa	nce Asse	ts (page	72) :	:	: ;	: :	:
6.3L	/ :   :   :	: :	: :	: :			:	: :	: :	:
ulri-P	r : urpose Dete	ction Sys	tem (page	74) :	:	• •	:	: :	: :	:
	.z /	6.3a	1 6.		6.4	7	:	: :	: :	:
ى	1 1	: :	: :	-	:	:	:	: :	: :	:
	<del></del>	: :	: :	: :	: (*********	: :		:;	\$ *	:
attlef	ield Enviro			Simulat	ion (BELD)	nes/rem:	SS) (pa	ige 64)	: :	•
<del></del>	6.3a	1 6.4	<u> </u>		•		•			•
otical	Correlator	Target C	neing (RNT	-10) (pa	ze 76)	: :	:	: :	: :	:
6.2	; ;	: :	: :	; ;	:	: :	•	: :	: :	:
-:-	<b>-</b> ; :	: :	: :	: :		: :	:	: :	: :	:
stonom	ous Acquisi			Process	or (RE-9)	(page	64):	: :	: :	:
	6.2		5.3a	: :	:	: :	:	: :	: :	;
i anch Fr	: : valuation (	nego 64)	: :	: :	•	; ;	:	: :	: :	:
6.3a		page 04)	: :	: :	•	: :	:	: :		:
<u> • - a</u>	<i>-</i> ); ;		: :	:	:	: :	:	: :	: :	:
1tomate	ed Systems	Per forman	ce Models	(page 64	·) :	: :	:	: :	: :	:
	6.2		);	: :	:	: :	:	: :	: :	:
: ************************************			755	; ;	:	•		: :	: :	:
COLAM	Modeling Ad	quisition	Effective	ness and	Anaiyais	(page	/ <b>U</b> )	: :	: :	:
<del></del>	<del>, 6.7</del>	<del></del>	<del></del> ;	: :		• •	•	• •	• •	•
mart S	ensor Model	a (all ve	hicles) (p	age 78):	:	: :	:			:
	6.2		_/: :	·: :	:	: :	:	: :	: :	:
-:	: :	: :		: :	:	: :	:	: :	: :	:
:	: :	: :	: :	: :	:	: :	:	: :	: :	:
:	: :	: :	: :	: :	:	: :	:	: :	: :	:
•	• •	•	• •	: :		; ;	:	: :	: :	:
:	: :			• •	•		•	• •	• •	•
:			•		•	•	•	•	•	•

SENSING :FY01: :FY97: :FY99: :FY93: :FY95: :FY91: :FY85: :FY87: :FY89: :FY83: :Dropable CRT (page 66) : 1-TBD-1 : :Electromagnetic Target Surround Characteristics in Natural Terrains (page 68) : : : : : : : :Terrain Effects of Visibility and Line-of-Sight Weapons (page 78) Dynamic Signatures of Target Surround Features in Realistic World Environments (page 68) : _/: : : : : : : : : : 7: : : : : : : : : : : : :Evaluation of False Alarm Mechanisms and Sources for Mine/Minefield Location (page 68) : : : : : :Concepts of Minefield Background Data Processing, Filtering, and Automatic Scanning (page 66) : :Terrain Signature Characterizations for Mine/Minefield Detection (page 79a) : : : : _ : :Analytical Techniques for the Design and Application of Sensors (page 62): <u>G.Z.</u> :Millimeter Wave Phased Array and Conformal Antennas (page 72) : [6.2] :LPE Focal Plane Array Fabrication Techniques (page 72) -: : : : : : : :SS 94 GHZ Transmitter/Receiver Module (page 78) : :

## SUPPORT

PVO1.	; :	. 8007	:	:	;	:	: - PVO 3	:	: :	: 77407	:	: :	;	٠.
FY83:	:FY85:	:FY87:	; FY	89:	:FY91		:FY93	:	:FY95:	:FY97	:	FY99:	:FY	υı
<u>: - : </u>	_::_		<u>-</u>	_ <u>:</u>	<u> </u>	<u>:                                      </u>	<u>:                                    </u>	<u>:                                    </u>	<del></del> -		::	<del>:</del>		
	: :		; ,	. :		;	:	:	: :	:	:	:	:	
KAM-D P	rediction	Methodol	ogy (ai	l ven	cles)	(page	84)	:	:	•	:	:	:	
<i></i>	<del></del> -	_/: :	:	:	:	:	•	:	: :	•	:	:	:	
•	_ : :			_:		: , ,	:	: .	: :	20)	:	:	;	
Compbat	Damage Pre	diction,	Diag &	Exbeq	Kepai	r (er	l ven	icles	) (page	80)	•	:	:	
	: :	; :	:	;	:	:	:	:	: ;	: ;	;	:	:	
· · · · · ·	; <u>;</u> ;		, <b>;</b>		;; , , ,	;	:	•	: :	:	:	;	:	
	operative	Activiti	es (all	vehic	iles) (	page	82)	:	: :	: :	•	:	:	
6.2	, 6.3				:	•	:	:	: :	: ;	:	:	:	
;		: :		•	<b>;</b>	:	:	:	: :	:	:	:	:	
Kepaire	bility Tec	nnology	(Ml) (p	age 64	;):	:	:	:	: :	: ;	:	•	7	
		: :	:	;	:	:	:	:	: :	: ;	:	:	:	
:		: ;	;	:		:	:	:	: ;	: :	:	:	:	
Forward	<u>Amm</u> unitio	n Supply	& Tran	efer (	FLV) (	p <b>age</b>	80)	:	: :	: :	:	:	:	
6.2	_/: :	: :	:	:	:	:	:	:	: :	: :	:	:	:	
;	-: :	: :	:	:	:	:	:	:	: :	: :	:	:	:	
NBC Eff	ects on A	Combat A	SL/PLL	(all v	ehicle:	s) (p	age 8:	2)	: :	: :	:	:	:	
	フ: :	: :	:	:	:	:	:	:	: :	:	:	:	:	
-	<b></b> : :	: :	:	:	:	:	:	:	: :	: :	:	;	:	
RAM-D C	omponents	<u>(a</u> 11 veh	icles)	(page	84)	:	:	:	: :	: :	:	:	:	
		<b>∵</b> :	:	:	;	:	:	:	: :	: :	:	:	;	
:	; :	—; ;	:	:	:	:	:	:	: :	:	:	;	:	
Establi	sh Stress	Levels o	n Crew	(page	80)	2	:	:	: ;	;	•	:	:	
/ TE	D 7	: ;	:	:	:	:	;	:	: :	: :	:	:	:	
	: <u></u> :	: :	:	:	:	;	:	:	: :	: :	:	:	:	
:	: :	: :	:	:	:	:	:	:	: :	: :	:	:	:	
:	: :	: :	:	:	:	:	:	:	: :	; ;	:	:	:	
:	; :	: :	:	:	<b>;</b>	:	;	:	: :	: :	:	:	;	
:	: :	: :	:	;	:	:	:	:	: :	: :	:	:	:	
:	: :	: :	:	:	:	:	:	:	: :	: :	:	:	:	
:	: :	: :	:	:	:	:	:	:	: :	:	:	•	:	
			:	:	•	:	:	:	: :	•		•	:	
			:	•	:	:	:	:	: :		•	:	:	
•								-			•			

: Y83:	: ::::::::::::::::::::::::::::::::::::	: :	: :FY89	: :	FY91:		FY93:		FY95:		FY97:		: FY99:	: :FY0
. 103.		. 10/.		: :			, , ,							
<del></del> -	<del></del>	<del></del>	<del></del>	<del>: - :</del>	<del></del>	<del></del> :							<del>- :</del>	<del>:</del>
Adiabat	ic Deformat	tion & B	allistic	Penetr	ation	of	rmor	Plate	(al1	veh	cles	) (pag	e 86)	:
		6.2												
:/	<del></del>	6.3a												
: -	-; -;/	6.4	7:	: :								1		:
:	; ;		<b>~</b> :	: :	:	: ;	: :	: :	: :	: !	: :	: ;	:	:
:	: :	: :	:	: :	:	: :	: ;	: :	: :	. :	: :	: :	2	:
ire Su	rvivabilit	y Techno	<u>logy</u> (all	vehic	les)	(page	92):	: 1	: :	;	:	; ;	:	;
	6.2		/:	: :	:	: :	; ;	:	:	:	: :	: :	:	:
:	: :	:::::::::::::::::::::::::::::::::::::::		: :			:	·			:	; ;	;	:
	ment of Hi	gh Stren	gth Homog	68008	Alumi	num A	llloy	(FVS,	, M113	, FO	() (pa	age 90	) :	2
· //:	: :	: ;	:	: :	:	:	:	; ;	: :		:		:	:
		•	:	• (**				,	0()				:	:
ulti-T	hreat Comp	osite An	mor Syste	mė (IA	V, ME	'GS , I	(CCV)	(page	96):				<del></del> ;	
<u> </u>	6.2	<del></del>	<del></del>											
,,,,	: : Impurity E	; ; n _;				: 	; 	; ;	(1	we i		EOU)	(	02).
6.2	7	rem TB D	eloim eri	engene	ուո8՝	יא יט	COMPLIE	M WIG	701 (I	, vo, i	1115,		(bage	727.
	4	7: :	•		•								•	:
<u></u>	.34	<b>/</b> : :	:	: :								•		:
nterfa	ce-Navy Sh	in Struc	tural Pro	tectio	n Pro		(ж1	FVS)	(Dage	94)			:	:
	6.2	7.						! '''	Puge				:	•
<del></del>	<del></del>	יַ : יַ		: :									•	•
eforma	tion Stren	ethenine	of Alumi	num Ar	mor (	FVS.	MPGS	FCCV	) (bi	we 9	))			:
6.27:	: :	: :	1	: :			:				:			:
	6.3	: :	•	: :		:		:		;			:	:
	<u> </u>	: :	:	: :		: :	:	: :	: ;	: .	;		:	:
ignetu	re Suppres	sion (al	l vehicle	s) (pa	ge 98	3)	:	: :	:		:	:	:	:
6		: :	:	: ;	•	: ;	:	: :	: :	;	:	:	:	:
	: :	: :	:	: :	:	: :	:	; ;	: :	;	:	: ;	:	:
ehicle	Effective	ness Tec	hnology (	all ve	hicle	es) (p	age :	(00)	: :	,	: :	: :	:	:
	, 2	<b>-</b> 7:	:	: :	:	: :		: ;	: :	; ;	: :	; ;	:	:
:	: :	: :	:	: :	:	:	:	;	: :		;	: :	:	;

: : :FY83:	: : : : : : : : : : : : : : : : : : :	:	187:	: :FY:	:	: :7791	:	: :FY93	:	: : :FY95:	: :FY3	:	: :FY9	:	: :FY01
			10/1		•	.6121	•					, .	* 17	•	
<del>: :</del>	<del></del>	<del>:</del>	<del></del> -	<del></del> -	<del>-</del> :	<del></del> -	<del>:</del> -	<del></del> -	<del></del>	<del></del>	<u></u>	<u> </u>	~ <del>-</del>	<del></del> -	<del></del>
:Vehicle	Hardeni	ne (Arn	nor &	Compo	nents)	(all	vehic	les)	(page	100):	:	:	:	:	:
:/ 6.2	·	:	:	:	:	;	:	:	:	: :	:	;	:	:	:
	:	:	:	;	:	:	:	:	:	: :	:	:	:	:	:
:Vehicle	Image Co	ontrol	(FVS,	M113	FOV,	LAV, M	PGS,	FCCV)	(pag	e 100)	:	:	:	:	;
: 6.3			•	:	;	:	;	:	;	: :	:	:	:	:	:
:		;	.:	, ;	. :	٠.	:,		٠	:, :	:	:	:	:	:
:Novel Ma		Systems	s for	Army .	Applic	ations	(211	vehi	cles!	(page	96);	<u>:</u> _		<u> </u>	<del>.                                    </del>
: <u></u>	<u> </u>														
: :Advanced	i i I Watawi	.1 Suga	; tome f	4-		Jisati	; onn (	; all	i obiol	: an) (ne	aa 86)			:	:
	3a	ar Syst	Ceide 1	01 41	ay App	ILLCACE	0118 (	all v	CILLE	287 (PE	ge (10)	<u> </u>	<del></del> -	<del></del>	<del></del>
<u></u>			<del></del> -	•	<del></del> -	<del></del> -	:	-	•	: :	•	-:		<del></del> -	•
i Armur Aj	olicati	ons of	Textu	red M	eteria	1s (al	1 veh	icles	) (pa	ge 86)	:	:	:	•	:
	.2														7
7-6	.3a							-							
: : 7	6.4 / :	:	-:-	-;	:	:	:	:	:	: :	:	:	:	:	;
: :	:	:	. :	:		:	:	:	:	•	. :	· .	· •	:	:
:Develop		Armor l	Plate	with	Improv	red Sha	tteri	ng Re	sista	nce (al	l vehic	les)	(page	90)	<u> </u>
·	6.2													<u> </u>	/
: :Dev of \	; ; :11 = m = h : = 1		: 		i Dmaa d	i For Com	: h cr.	i ·omath		i i	; ahnaan	(611	i wahal	;	. 00)
	6.3a	7 .	uktu a			OL COM		· eugen			giille 6 5	i	VE(18)	(hage	• 707
(6.2)	- +	6.4	<del></del> ;	:	<u>.</u>	:	:	:	:	• •	•	•	•	•	:
: :		6.4	_/;	i	:	:	:	:	:	. :	:	;	÷	:	;
:Materia	ls/Struc	tures :	Scale~	Up De	monsti	ration	(FVS)	(pag	e 96)		•		:	:	:
:/ 6.3	7:	:	:	· :	:	:	:	:	:	: :	:	:	:	:	:
: :	;	:	:	:	:	:	;	:	:	: :	:	:	:	:	:
:Reactive	& Adva	nced P	assive	Armo	rs (M6	50, Ml,	FVS,	LAV,	MPGS	, FCCV)	(page	96)	:	:	:
: [	6.2	ــــــــــــــــــــــــــــــــــــــ	:	:	:	:	:	:	:	: ;	:	:	:	:	:
:	6.34	_/:	:	;	:	:	:	:	:	: :	:	:	:	;	:
: :	: - ;	:	:	;	:	:	:	:	:	: :	:	:	ţ	:	:
: :	: :	:	:	:	:	;	:	:	:	: :	:	:	:	:	:
: :	: :	:	:	:	:	:	:	:	:	: :	:	:	:	:	:

-vo2.	: :FY85:	: :FY87	: :	: :FY89		FY91:		: : FY93		: :FY95:		: :FY97	; ,	: :FY99	:	: :FY0
Y83:	: (874:	:1187		r 189:								.F19/	•			
<del></del>	<del></del>	<del></del>	<del></del>	<del></del>				<del></del>		<del>:</del> -		<del>:</del>	<del>:</del>	<del></del> -	<del>:</del>	<del></del> -
in a f	spall Supp			o Wit	hin (		3 T	ent A	-600	(-11 ;	.oh.i.c.		(nace	90)	:	:
ev or a	sparr supp	6881011	Liner	8 WIL	n Lu	VI 16 16	6.2	allk A	Caa	(all )	CITC	IEG/	( Page	,,,,	<del></del>	<u></u>
6.3	<u>, , , , , , , , , , , , , , , , , , , </u>		<del></del>				U. L							<del>-</del>	<del></del>	-:-
6.5		•	• •	•			•			: :		:	:	:	:	•
6	<del>'</del> /	•	•	:				•		:		:	:	:	:	:
:	: ;	•		-						:		:	:	:	:	:
dvance	i Armor Ma	rerial .	Applic	at ion	(a1	lvehi	cles	) (par	ze 86	) :		:	:	:	•	:
	6.2	7		:	`	:	:			:		:	•	:	:	:
<del></del>			: :	:				:	:	:	:	:	:	:	:	:
iels &	Lubricant	s: Fir	e-Resi	stant	Fue	ls (a)	1 ve	hicles	s) (p.	age 92	2)	:	:	:	:	;
	6.2		<i>/</i> :	:		: :	:	:		: ;		:	:	:	:	:
<del>:</del>	<del></del>		<del></del> ':	:		: :	:	:	:	; :	:	:	:	:	:	:
iels â	Lubricant	a: Pir	e-Resi	stant	Hyd	caulio	Flu	id (a	l 1 vel	hicles	s) (p	age 9	2)	:	:	;
<del>,</del> ;	: :	:	: :	:		: ;	:	:	:	: :		:	:	:	:	:
6.3	34 /	:	: :	:		: :	:	:	:	: :	:	:	:	:	:	:
<del>-:</del>	•	:	: :	:		: :	:	:	:	: :	:	:	:	:	:	:
omparti	menting (a	ll vehi	cles)	(page	90)	: :	:	:	:	: :	;	:	:	:	:	:
	6.2		<i></i>	:		: ;	:	:	:	: :	;	:	:	:	:	:
:	: :	<del>-:</del>	: :	:		: ;	:	:	:	: :	:	:	:	;	:	:
hemica	l Warfare	Agent-R	esista	nt Ma	teri	al for	c Coma	b Veh	icles	(all	vehi	cles)	(pag	e 88)	:	:
	6.34	7:	: :	:		: :	:	:	:	: ;	;	:	:	:	:	:
:	;	:	: :	:		: ;	:	:	• .	: :	١ .	:	:	:	:	:
BC Pro	tection fo	r Compa	t Vehi	cles	& Re	lated	Equi	pment	(all	vehic	:les)	(pag	e 96)	:	:	:
64	7: :	:	: :	:		: :	:	:	:	: :	:	:	:	:	:	:
:		•	: :			: _ :	•	:		: :		<b>:</b>	<b>:</b>	•	:	:
BC Col	lective Pr		rial f	or Ar	more	d Commut	) Veh	icle	Appli	cation	15 (a	ll ve	hicle	8) (p	age	96)
	6.	4		/:		:	•	:	:	:	:	:	:	:	:	:
:	:	:	: ;	:		: ( ):	:	:	•	:	:	:	:	:	:	:
	Radiation	Shield	ing (a	ll ve	hicl	es) (j	page	102)	:	:	:	;	:	:	;	:
6.7	<u>.</u> / :	:	: :	:		: :	:	:	:	: :	1	:	:	•	:	:
		•		:		: :	:	:	:	: :	:	:	:	:	:	:

:	: :	:	:	<u> </u>	:	:	:	:	:	:	:	;	:	:	:	:	
FY83:	:FY85	:	:FY8	7:	:FY89	:	:FY91	:	:FY93	:	:FY95	:	:FY97	:	:FY99	); •	FYOL
<del></del>	<del>_</del>	-	<del>-</del>	<del>-</del>	<del></del>	<del></del>	<del></del> -	<del></del>	÷	<del></del>	<del></del>	<del></del> -	<del></del>	<del>:</del>	<del>;</del> -	<del>-</del>	<del></del>
Julnere	bility/V	/u i n	erahi	lity	Reduct	ion (	eli v	ehicl	es) (	Dage	102)	•	•	:	•	:	:
dinera	6.2		<del>C</del> L au	לי:		:	:	:	:	r- <b>6</b> -	:	:	:	:	:	:	:
<del></del>			-:-	`:	:	:	:	:	:	:	:	:	:	:	:	:	:
O/Lase	r Counte	rme	asure	Tech	niques	(a11	vehi	cles)	(pag	e 92	)	:	:	:	:	:	
							6.2										
:	:		:	:	:	:	-	:	:	:	:	:	:	:	:	:	:
witomat.	ic Targe	t R	ecogn	izer	Digita	l Ima	gery	Deta	Base	(H1,	MPGS,	FCCV	) (pa	ge 88	<u>):</u>	<u>:</u>	<u> </u>
							6.2										
		:	:	;	:	:	:	•	:	:	:	:	:	:	:	:	•
	flect &	Eai	tted	Energ	gy Sup	Sys (	Trees	5) Ca	moufi	age 1	Res (a	ll ve	hicle	e) (p	age S	(8)	:
6.1 }	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1 6.2	: ال	:	:	:	;	ı	2	:	:	:	:	:	:	:	:		
	• • •	٠,	:	:		:		•	•	:	:	:	:	:	:	:	:
	ser Pair			ehic)	les) (p	age 5	6)	:	:		•	:	:	:	Ξ.	:	:
6.2		<u>6.3</u>	<u>a</u>	1:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:		:		•		
		: . / . l		:	•				:		•				•	•	•
	(all vet	irci	es) (	page	90)			•		•	•	•		•	•	•	:
	-7			:	•			•		•	•		•	•		•	•
i Zailuma	Criter				rian Ma	chani	. (-	11 24	ahicla	.) (:	Dega 9	· ?)	:	•	:	:	•
WILLIAM C	CITLEI		u rei	CLL	C LOIL TRE		, Z		III CIE	5/ \	page )		<u> </u>	<del></del> -	<del></del>	<u> </u>	<del></del> -
<del></del> ;	<del></del>			<del></del>	<del></del>	<u>ئ</u> ــــــــــــــــــــــــــــــــــــ			<del></del>		<del></del>		<u></u>	<del></del>	•	<del></del> -	<del></del>
levelon	ment of	Bal	lieti	c Dat	ta for	Armor	Mate	riale	(a11	veh	icles)	(DAR	e 90)	•	•	:	:
							. Z.										
		_			:	:	:	<del>-</del>	:	:	:	:	:	:	1	:	Ţ-
:	3	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	:
:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	;	1	:
:	:	:	:	:	:	5	:	:	:	:	:	:	2	:	:	:	:
:	:	:	:	\$	:	:	:	:	:	:	:	:	:	:	:	:	•
:	:	:	:	;	:	:	:	:	:	:	:	:	:	:	:	;	:
:	:	:	:	:	:	:	:	:	:	:	:	:	ž.	:	:	:	:
•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
			•	•	•	•	•	:	•	:	:	:	:	:	:	:	:

: :	1 :	::	: :		: :		: :	;	: :	
FY83:	:FY85:	:FY87:	:FY89:	:FY91	: :F	7Y93:	:FY95:	:FY97:	:FY99	:FYO
<del></del>	<del></del>	<del>-                                    </del>	<del></del>		<del>!:</del>	<del></del>	<del></del>	<del></del>		
Transpa	reat Polyur	ethane El	astomers	(all veh:	icles)	(page 10	0) :	: :	•	
/ 6.2	7 /6.30		7: :	;	: :	:	: :	: :	:	:
::	-:		<b>-</b> : :	:	. :	:	: :	: :	:	: :
:Chemica	l & Biologi	cal Decon	taminatio	n & Cont	aminati	on Avoid	ance (all	vehicle	es) (page	88) :
:	6.Z								·	
			: :	:	: :		: ;	: ;	:	:
Chemica	l-Biologica	Il Threat	Assessmen	t Techno	logy (a	ill vehic	les) (pag	e 88):	:	:
	6.2	<del></del>	<b>-</b> ∕: :	:		:		: :		:
Nev of	Lightweight	· Para Arm	or Motic	to Dafael	 P. Adv. T	hraata (	all vobic	100) (5	000 90)	• <del>•</del>
C OI	6.2	. LELS ALL	Z natte	to berea	: Auv I		i i	: :	age 307	
<del></del>	- <del></del>	<del></del>	/: :	•	: :	:		: :		
Reduced	Cost of Ad	lvanced Ma	terial (F	CCV) (pag	ze 98)	:	:	: :		:
/	6.2	ブ: :	: :			:	: :	: :	3	:
7	6.3a	7:	: ;	:	: :	:	: :	: :	:	: :
:	: :	· ·	: :	:	: :	:	: :	: :	: :	: :
Lightwe	ight Protec	tive Armo	r for Con	tainers	(LAV, M	MPGS, FCC	V) (page	94) :	:	: :
6.3	a / 6.4	<u> </u>	: :	:	: :	;	: :	: :	: :	:
		: :			: :	:	: :	.: ;	:	: :
	ight Combat	Vehicle	Composite	Componer	ats (MP	CS, FCCV	) (page 9	4)	:	:
	6.2	√: :		•	: :		: :	: :		
Los Vol	n Prop Char	(1.0VA)	/Reduced	Vuln Tenl	i Curi P	i Prop Char		961	-	
Tow var	6. 2	AC YOUN	, meduced	AGTIL TON		. cop char	Res (hake		•	
·	: /	6.3a	7:	•	: :	:	: :	: :		
•				:	: :	:		: :	:	
Chemics	l Detection	ı & Identi	fication	Technolog	gy-NBC	Reconnai	ssance Sy	s (FVS,	M113 FOV	) (page 88
	6.30	6.4	_/: :	:	: :	:	: ; `	: :	: :	; • •
:	: :	; ;	: :	:	: :	:	: :	: :	:	;
: :	: :	: ;	: :	;	: :	;	: :	: :	: :	:
:	: :	: ;	: :	:	: :	:	: :	: :	: :	:
: :	: ;	: :	: ;	:	: :	:	: :	: :	: :	;

# This Document Reproduced From Best Available Copy

# SUPPORTING TECHNOLOGY SURVIVABILITY :FY83: :FY89: :FY87: :FY91: :FY93: :FY97: :FY99: :FY01: :FY95: :Armored Vehicle Systems Model (M60, M1, FVS, LAV, MPGS, FCCV) (page 86) :Multifunctional Armor Systems for Defeat of Top Attack (M60, M1, FVS) (page 96) :Terminally Guided Submunitions/Overhead Armor (all vehicles) (page 100) Dev and Testing of Laser Hardened Materials Against Pulsed Threaks (all vehicles) (page 90) 6.2 6.3a 6.4